Publications Library

Found 379 results
Filters: First Letter Of Last Name is M  [Clear All Filters]
2023
Krueger ES, Levi MR, Achieng KO, et al. Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions. International Journal of Wildland Fire. 2023;32(2).PDF icon WF22056.pdf (3.84 MB)
Ritter SM, Hoffman CM, Battaglia MA, Linn R, Mell WE. Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption. Fire. 2023;6(8).PDF icon fire-06-00321.pdf (2.34 MB)
Barnard DM, Green TR, Mankin KR, et al. Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States. Agricultural Water Management. 2023;286.PDF icon Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States.pdf (1.41 MB)
Barnard DM, Green TR, Mankin KR, et al. Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States. Agricultural Water Management. 2023;286.PDF icon Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States.pdf (1.41 MB)
Brodie EG, Stewart JAE, Winsemius S, et al. Wildfire facilitates upslope advance in a shade-intolerant but not a shade-tolerant conifer. Ecological Applications. 2023.PDF icon Ecological Applications - 2023 - Brodie - Wildfire facilitates upslope advance in a shade%E2%80%90intolerant but not a-2.pdf (6.48 MB)
Taccaliti F, Marzano R, Bell TL, Lingua E. Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review. Fire. 2023;6(9). Available at: https://doi.org/10.3390/fire6090343.PDF icon fire-06-00343.pdf (1.68 MB)
2022
Champ PA, Brenkert-Smith H, Riley JP, et al. Actionable social science can guide community level wildfire solutions. An illustration from North Central Washington, US. International Journal of Disaster Risk Reduction. 2022;82.PDF icon 1-s2.0-S2212420922006070-main.pdf (2.48 MB)
Reilly MJ, Zuspan A, Halofsky JS, et al. Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere. 2022;13.PDF icon Reilly et al_2022_Cascadia Burning_Historic but not historically unprecedented 2022 wildfires in PNW.pdf (9.62 MB)
Snitker G, Roos CI, Sullivan, III AP, et al. A collaborative agenda for archaeology and fire science. Nature Ecology & Evolution. 2022.PDF icon Snitker_et_al_2022_NatureEcoEvo_A collaborative agenda for achaeology and fire science.pdf (2.99 MB)
Iniguez JM, Evans AM, Dadashi S, et al. Comparing Geography and Severity of Managed Wildfires in California and the Southwest USA before and after the Implementation of the 2009 Policy Guidance. Forests. 2022;13(793).PDF icon Iniguez et al_2022_Comparing geography and severity of managed wildfires in CA and SW USA before and after 2009 policy guidance.pdf (1.64 MB)
Iniguez JM, Evans AM, Dadashi S, et al. Comparing Geography and Severity of Managed Wildfires in California and the Southwest USA before and after the Implementation of the 2009 Policy Guidance. Forests. 2022;13(793).PDF icon Iniguez et al_2022_Comparing geography and severity of managed wildfires in CA and SW USA before and after 2009 policy guidance.pdf (1.64 MB)
Suzuki S, Manzello SL. Comparing particulate morphology generated from human- made cellulosic fuels to natural vegetative fuels. International Journal of Wildland Fire. 2022;31. Available at: https://doi.org/10.1071/WF22093.PDF icon Suzuki and Manzello_2022_IJWF_Comparing particulate morphology generated from human-made cellulosic fuels to natural vegetative fuels.pdf (2.79 MB)
Suzuki S, Manzello SL. Comparing particulate morphology generated from human-made cellulosic fuels to natural vegetative fuels. International Journal of Wildland Fire. 2022;32. Available at: https://www.publish.csiro.au/WF/WF22093.PDF icon Comparing particulate morphology generated from human- made cellulosic fuels to natural vegetative fuels.pdf (2.77 MB)
Thompson MP, Vogler KC, Scott JH, Miller C. Comparing risk-based fuel treatment prioritization with alternative strategies for enhancing protection and resource management objectives. Fire Ecology. 2022;18(26).PDF icon s42408-022-00149-0.pdf (3.88 MB)
Long JW, Drury SA, Evans SG, Maxwell CJ, Scheller RM. Comparing smoke emissions and impacts under alternative forest management regimes. Ecology and Society. 2022;27(4).PDF icon Long et al_2022_Ecol Society_Comparing smoke emissions and impacts under alternative forest management regimes.pdf (12.35 MB)
Weise DR, Johnson TJ, Myers TL, et al. Comparing two methods to measure oxidative pyrolysis gases in a wind tunnel and in prescribed burns. International Journal of Wildland Fire. 2022;32. Available at: https://www.publish.csiro.au/wf/pdf/WF22079.PDF icon Comparing two methods to measure oxidative pyrolysis gases in a wind tunnel and in prescribed burns.pdf (2.65 MB)
Shaw DC, Beedlow PA, E. Lee H, et al. The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States. Forest Ecology and Management. 2022;525.PDF icon Shaw et al_2022_ForEcolMgmt_Complexity of BDAs fuels heterogenity and fire in conifer forests of West US.pdf (1.25 MB)
Shaw DC, Beedlow PA, E. Lee H, et al. The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States. Forest Ecology and Management. 2022;525.PDF icon Shaw et al_2022_ForEcolMgmt_Complexity of BDAs fuels heterogenity and fire in conifer forests of West US.pdf (1.25 MB)
Kearns EJ, Saah D, Levine CR, et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire. 2022;5(117).PDF icon Kearns et al_2022_Fire_The Construction of ProbabilisticWildfire Risk Estimates for Individual Real Estate Parcels for US.pdf (7.09 MB)
Kearns EJ, Saah D, Levine CR, et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire. 2022;5(117).PDF icon Kearns et al_2022_Fire_The Construction of ProbabilisticWildfire Risk Estimates for Individual Real Estate Parcels for US.pdf (7.09 MB)
Kearns EJ, Saah D, Levine CR, et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire. 2022;5(117).PDF icon Kearns et al_2022_Fire_The Construction of ProbabilisticWildfire Risk Estimates for Individual Real Estate Parcels for US.pdf (7.09 MB)
Marsha AL, Larkin NK. Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States. Fire. 2022;5(147).PDF icon Marsha and Larkin_2022_Fire_Evaluating satellite fire detection produts and en ensemble approach for estimating burn area in US.pdf (2.82 MB)
Sonti NF, Riemann R, Mockrin MH, Domke GM. Expanding wildland-urban interface alters forest structure and landscape context in the northern United States. Environmental Research Letters. 2022;18.PDF icon Expanding wildland-urban interface alters forest structure and landscape context in the northern United States .pdf (2.47 MB)
Maxwell C, Scheller RM, Long JW, Manley P. Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada. Ecology and Society. 2022;27(1).PDF icon Maxwell et al_2022_Ecol Society_Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin CA and NV.pdf (2.24 MB)
Maxwell C, Scheller RM, Long JW, Manley P. Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada. Ecology and Society. 2022;27(1).PDF icon Maxwell et al_2022_Ecol Society_Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin CA and NV.pdf (2.24 MB)

Pages