Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA.

TitleSpatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA.
Publication TypeJournal Article
Year of Publication2017
AuthorsBarros, AMG
Secondary AuthorsAger, AA
Tertiary AuthorsDay, MA
Subsidiary Authorsal., et
JournalEcology and Society
Volume22
Start Page24
Issue1
Keywordsagent-based model, Deschutes National Forest, Flammap, minimum travel time, state-and-transition model, technical reports and journal articles
Abstract

We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type. We modeled forest succession using a state-and-transition approach and simulated wildfires based on the contemporary fire regime of the region. We tested for the presence of temporal trends and overall differences in burned area among four fuel management scenarios. Results showed that when the forest was managed to reduce fuels it burned less: over the course of 50 years there was up to a 40% reduction in area burned. However, simulation outputs did not reveal the expected temporal trend, i.e., area burned did not decrease progressively with time, nor did the absence of management lead to its increase. These results can be explained as the consequence of an existing wildfire deficit and vegetation succession paths that led to closed canopy, and heavy fuels forest types that are unlikely to burn under average fire weather. Fire (and management) remained relatively rare disturbances and, given our assumptions, were unable to alter long-term vegetation patterns and consequently unable to alter long-term wildfire dynamics. Doubling and tripling current management targets were effective in the near term but not sustainable through time because of a scarcity of stands eligible to treat according to the modeled management constraints. These results provide new insights into the long-term dynamics between fuel management programs and wildfire and demonstrate that treatment prioritization strategies have limited effect on fire activity if they are too narrowly focused on particular forest conditions.

DOI10.5751/ES-08917-220124