Publications Library

Found 379 results
Filters: First Letter Of Last Name is M  [Clear All Filters]
2022
Long JW, Drury SA, Evans SG, Maxwell CJ, Scheller RM. Comparing smoke emissions and impacts under alternative forest management regimes. Ecology and Society. 2022;27(4).PDF icon Long et al_2022_Ecol Society_Comparing smoke emissions and impacts under alternative forest management regimes.pdf (12.35 MB)
Weise DR, Johnson TJ, Myers TL, et al. Comparing two methods to measure oxidative pyrolysis gases in a wind tunnel and in prescribed burns. International Journal of Wildland Fire. 2022;32. Available at: https://www.publish.csiro.au/wf/pdf/WF22079.PDF icon Comparing two methods to measure oxidative pyrolysis gases in a wind tunnel and in prescribed burns.pdf (2.65 MB)
Shaw DC, Beedlow PA, E. Lee H, et al. The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States. Forest Ecology and Management. 2022;525.PDF icon Shaw et al_2022_ForEcolMgmt_Complexity of BDAs fuels heterogenity and fire in conifer forests of West US.pdf (1.25 MB)
Shaw DC, Beedlow PA, E. Lee H, et al. The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States. Forest Ecology and Management. 2022;525.PDF icon Shaw et al_2022_ForEcolMgmt_Complexity of BDAs fuels heterogenity and fire in conifer forests of West US.pdf (1.25 MB)
Kearns EJ, Saah D, Levine CR, et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire. 2022;5(117).PDF icon Kearns et al_2022_Fire_The Construction of ProbabilisticWildfire Risk Estimates for Individual Real Estate Parcels for US.pdf (7.09 MB)
Kearns EJ, Saah D, Levine CR, et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire. 2022;5(117).PDF icon Kearns et al_2022_Fire_The Construction of ProbabilisticWildfire Risk Estimates for Individual Real Estate Parcels for US.pdf (7.09 MB)
Kearns EJ, Saah D, Levine CR, et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire. 2022;5(117).PDF icon Kearns et al_2022_Fire_The Construction of ProbabilisticWildfire Risk Estimates for Individual Real Estate Parcels for US.pdf (7.09 MB)
Marsha AL, Larkin NK. Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States. Fire. 2022;5(147).PDF icon Marsha and Larkin_2022_Fire_Evaluating satellite fire detection produts and en ensemble approach for estimating burn area in US.pdf (2.82 MB)
Sonti NF, Riemann R, Mockrin MH, Domke GM. Expanding wildland-urban interface alters forest structure and landscape context in the northern United States. Environmental Research Letters. 2022;18.PDF icon Expanding wildland-urban interface alters forest structure and landscape context in the northern United States .pdf (2.47 MB)
Maxwell C, Scheller RM, Long JW, Manley P. Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada. Ecology and Society. 2022;27(1).PDF icon Maxwell et al_2022_Ecol Society_Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin CA and NV.pdf (2.24 MB)
Maxwell C, Scheller RM, Long JW, Manley P. Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada. Ecology and Society. 2022;27(1).PDF icon Maxwell et al_2022_Ecol Society_Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin CA and NV.pdf (2.24 MB)
Williams PA, Livneh B, McKinnon KA, et al. Growing impact of wildfire on western US water supply. PNAS. 2022;119(10). Available at: https://www.pnas.org/doi/full/10.1073/pnas.2114069119.PDF icon pnas.2114069119.pdf (2.09 MB)
Williams PA, Livneh B, McKinnon KA, et al. Growing impact of wildfire on western US water supply. PNAS. 2022;119(10). Available at: https://www.pnas.org/doi/full/10.1073/pnas.2114069119.PDF icon pnas.2114069119.pdf (2.09 MB)
Mockrin MH, Helmers D, Martinuzzi S, Hawbaker TJ, Radeloff VC. Growth of the wildland-urban interface within and around U.S. National Forests and Grasslands, 1990–2010. Landscape and Urban Planning. 2022;218.PDF icon Mockrin et al_2021_Growth of WUI around national forests and grasslands.pdf (2.44 MB)
Mockrin MH, Helmers D, Martinuzzi S, Hawbaker TJ, Radeloff VC. Growth of the wildland-urban interface within and around U.S. National Forests and Grasslands, 1990–2010. Landscape and Urban Planning. 2022;218.PDF icon Mockrin et al_2021_Growth of WUI around national forests and grasslands.pdf (2.44 MB)
Millington JDA, Perkins O, Smith C. Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling. Fire. 2022;5(4).PDF icon Millington et al_2022_Human Fire Use and Mgmt- A Global Database of Anthropogenic Fire Impacts for Modelling.pdf (3.75 MB)
Essen M, McCaffrey S, Abrams J, Paveglio T. Improving wildfire management outcomes: shifting the paradigm of wildfire from simple to complex risk. Journal of Environmental Planning and Management. 2022;Online.PDF icon Essen et al 2022_Improving WF Mgmt outcomes.pdf (663.56 KB)
Wickham SB, Augustine S, Forney A, et al. Incorporating place-based values into ecological restoration. Ecology and Society. 2022;27(3).PDF icon Wickham et al_2022_Ecol and Soc_Incorporating place-based values into ecological restoration.pdf (2.01 MB)
Roos CI, Guiterman CH, Margolis EQ, et al. Indigenous fire management and cross-scale fire-climate relationships in the Southwest United States from 1500 to 1900 CE. Science Advances. 2022;8(49). Available at: https://www.science.org/doi/10.1126/sciadv.abq3221.PDF icon Roos et al_2022_ScienceAdvances_Indigenous fire mgmt and cross-scale fire-climate relationships in the SW US 1500 to 1900 CE.pdf (1.46 MB)
Freeborn PH, MattJolly W, A.Cochrane M, GarethRoberts . Large wildfire driven increases in nighttime fire activity observed across CONUS from 2003–2020. Remote Sensing of Environment. 2022;268. Available at: https://doi.org/10.1016/j.rse.2021.112777.PDF icon Freeborn et al_2022_Remote Sensing Enviro_Large Wildfire Driven Increases in Nighttime Fire Activity Across CONUS 2003-2020.pdf (3.09 MB)
Orysiak J, Młynarczyk M, Piec R, Jakubiak A. Lifestyle and environmental factors may induce airway and systemic inflammation in firefighters. Environmental Science and Pollution Research. 2022;29:73741–73768.PDF icon Orysiak et al_2022_EnviroScieneandPollResearch_Lifestyle and enviro factors may induce airway and systemic inflammation in firefighters.pdf (1.3 MB)
Cattau ME, Mahood AL, Balch JK, Wessman CA. Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States. Fire. 2022;5.PDF icon Cattau et al_Modern Pyromes_Biol patterns of fire characteristics across contiguous US.pdf (1.85 MB)
Jones BA, McDermott S, Champ PA, Berrens RP. More smoke today for less smoke tomorrow? We need to better understand the public health benefits and costs of prescribed fire. International Journal of Wildland Fire. 2022;31(10):918–926.PDF icon Jones et al_2022_IJWF_More smoke today for less smoke tomorrow_We need to better understand public health benefits and costs of rx fire.pdf (2.41 MB)
Mahood AL, Lindrooth EJ, Cook MC, Balch JK. Open Scientific Data: Country-level fire perimeter datasets (2001–2021). Scientific Data. 2022;9(458).PDF icon Mahood et al_2022_scientific data_country-level fire perimeter.pdf (2.18 MB)
Thompson MP, O’Connor CD, Gannon BM, et al. Potential operational delineations: new horizons for proactive, risk-informed strategic land and fire management. Fire Ecology. 2022;18.PDF icon Thompson et al_2022_FireEcol_PODs as New horizons for proactive risk-informed strategic land and fire mgmt.pdf (7.5 MB)

Pages