Publications Library

Found 253 results
Filters: First Letter Of Last Name is D  [Clear All Filters]
2023
Huang X, Ding K, Liu J, et al. Smoke-weather interaction affects extreme wildfires in diverse coastal regions. Science. 2023;379(6631). Available at: https://www.science.org/doi/epdf/10.1126/science.add9843.PDF icon Smoke-weather interaction affects extreme wildfires in diverse coastal regions .pdf (3.59 MB)
Huang X, Ding K, Liu J, et al. Smoke-weather interaction affects extreme wildfires in diverse coastal regions. Science. 2023;379(6631). Available at: https://www.science.org/doi/epdf/10.1126/science.add9843.PDF icon Smoke-weather interaction affects extreme wildfires in diverse coastal regions .pdf (3.59 MB)
Peterson DW, Dodson EK, Harrod RJ. Snag decomposition following stand-replacing wildfires alters wildlife habitat use and surface woody fuels through time. Ecosphere. 2023;14(8).PDF icon Peterson et al - 2023 - Ecosphere[55].pdf (2.01 MB)
Greenler SM, Dunn CJ, Johnston JD, et al. Too hot, too cold, or just right: Can wildfire restore dry forests of the interior Pacific Northwest?. Plos One. 2023;18(2).PDF icon journal.pone_.0281927.pdf (3.46 MB)
Hoecker TJ, Parks SA, Krosby M, Dobrowski SZ. Widespread exposure to altered fire regimes under 2 °C warming is projected to transform conifer forests of the Western United States. Nature. 2023;4(295).PDF icon s43247-023-00954-8.pdf (5.38 MB)
Barnard DM, Green TR, Mankin KR, et al. Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States. Agricultural Water Management. 2023;286.PDF icon Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States.pdf (1.41 MB)
2022
Champ PA, Brenkert-Smith H, Riley JP, et al. Actionable social science can guide community level wildfire solutions. An illustration from North Central Washington, US. International Journal of Disaster Risk Reduction. 2022;82.PDF icon 1-s2.0-S2212420922006070-main.pdf (2.48 MB)
Reilly MJ, Zuspan A, Halofsky JS, et al. Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere. 2022;13.PDF icon Reilly et al_2022_Cascadia Burning_Historic but not historically unprecedented 2022 wildfires in PNW.pdf (9.62 MB)
Reilly MJ, Zuspan A, Halofsky JS, et al. Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere. 2022;13.PDF icon Reilly et al_2022_Cascadia Burning_Historic but not historically unprecedented 2022 wildfires in PNW.pdf (9.62 MB)
Reilly MJ, Zuspan A, Halofsky JS, et al. Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere. 2022;13.PDF icon Reilly et al_2022_Cascadia Burning_Historic but not historically unprecedented 2022 wildfires in PNW.pdf (9.62 MB)
Reilly MJ, Zuspan A, Halofsky JS, et al. Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere. 2022;13.PDF icon Reilly et al_2022_Cascadia Burning_Historic but not historically unprecedented 2022 wildfires in PNW.pdf (9.62 MB)
Snitker G, Roos CI, Sullivan, III AP, et al. A collaborative agenda for archaeology and fire science. Nature Ecology & Evolution. 2022.PDF icon Snitker_et_al_2022_NatureEcoEvo_A collaborative agenda for achaeology and fire science.pdf (2.99 MB)
Copes-Gerbitz K, Dickson-Hoyle S, Ravensbergen SL, et al. Community Engagement With Proactive Wildfire Management in British Columbia, Canada: Perceptions, Preferences, and Barriers to Action. Frontiers in Forests and Global Change. 2022;5(829125).PDF icon Copes-Gerbitz et al_2022_Community Engagement with Proactive Wildfire Management in BC_Perceptions Preferences and Barriers.pdf (9.61 MB)
Copes-Gerbitz K, Dickson-Hoyle S, Ravensbergen SL, et al. Community Engagement With Proactive Wildfire Management in British Columbia, Canada: Perceptions, Preferences, and Barriers to Action. Frontiers in Forests and Global Change. 2022;5(829125).PDF icon Copes-Gerbitz et al_2022_Community Engagement with Proactive Wildfire Management in BC_Perceptions Preferences and Barriers.pdf (9.61 MB)
Iniguez JM, Evans AM, Dadashi S, et al. Comparing Geography and Severity of Managed Wildfires in California and the Southwest USA before and after the Implementation of the 2009 Policy Guidance. Forests. 2022;13(793).PDF icon Iniguez et al_2022_Comparing geography and severity of managed wildfires in CA and SW USA before and after 2009 policy guidance.pdf (1.64 MB)
Long JW, Drury SA, Evans SG, Maxwell CJ, Scheller RM. Comparing smoke emissions and impacts under alternative forest management regimes. Ecology and Society. 2022;27(4).PDF icon Long et al_2022_Ecol Society_Comparing smoke emissions and impacts under alternative forest management regimes.pdf (12.35 MB)
Kearns EJ, Saah D, Levine CR, et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire. 2022;5(117).PDF icon Kearns et al_2022_Fire_The Construction of ProbabilisticWildfire Risk Estimates for Individual Real Estate Parcels for US.pdf (7.09 MB)
Copes-Gerbitz K, Daniels LD, Hagerman SM. The contribution of Indigenous stewardship to an historical mixed-severity fire regime in British Columbia, Canada. Ecological Applications . 2022. Available at: https://doi.org/10.1002/eap.2736.PDF icon Copes-Gerbitz et al_2022_Ecol Application_Contributions of Indigenous Stewardship to an historical mixed-severity fire regime in BC Canada.pdf (2.47 MB)
Chavardès RD, Danneyrolles V, Portier J, et al. Converging and diverging burn rates in North American boreal forests from the Little Ice Age to the present. International Journal of Wildland Fire. 2022;31(12):1184-1193.PDF icon Chavardes et al 2022_IJWF_Converging and diverging burn rates in N American boreal forests from little ice age to present.pdf (2.54 MB)
Chavardès RD, Danneyrolles V, Portier J, et al. Converging and diverging burn rates in North American boreal forests from the Little Ice Age to the present. International Journal of Wildland Fire. 2022;31(12):1184-1193.PDF icon Chavardes et al 2022_IJWF_Converging and diverging burn rates in N American boreal forests from little ice age to present.pdf (2.54 MB)
Belavenutti P, Ager AA, Day MA, Chung W. Designing forest restoration projects to optimize the application of broadcast burning. Ecological Economics. 2022.PDF icon Belavenutti et al_2022_Ecological Econ_Designing forest restoration projects to optimize the application of broadcast burning.pdf (3.12 MB)
Leduc C, Giga SI, Fletcher IJ, Young M, Dorman SC. Effectiveness of fitness training and psychosocial education intervention programs in wildland firefighting: a cluster randomised control trial. International Journal of Wildland Fire. 2022;31:799-815.PDF icon Leduc et al_2022_IJWF_Effectiveness of fitness traning and phychosocial education intervention in wildland firefighters.pdf (1.14 MB)
Sonti NF, Riemann R, Mockrin MH, Domke GM. Expanding wildland-urban interface alters forest structure and landscape context in the northern United States. Environmental Research Letters. 2022;18.PDF icon Expanding wildland-urban interface alters forest structure and landscape context in the northern United States .pdf (2.47 MB)
Burke M, Heft-Neal S, Li J, et al. Exposures and behavioural responses to wildfire smoke. Nature Human Behavior. 2022.PDF icon Burke et al_2022_Nature Human Behavior_Exposures and behavioural responses to wildfire smoke.pdf (8.57 MB)
K.Creutzburg M, C.Olsen A, A.Anthony M, et al. A geographic strategy for cross-jurisdictional, proactive management of invasive annual grasses in Oregon. Rangelands. 2022:173-180.PDF icon Creutzburg et al_2022_A geog strategy for crossjurisdictional proactive mgmt of invasive annual grasses in OR.pdf (3.52 MB)

Pages