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Abstract 
Context  In western US forests, the increasing fre-
quency of large high-severity fires presents challenges 
for society. Quantifying how fuel conditions influence 
high-severity area is important for managing risks of 
large high-severity fires and understanding how they 
are changing with climate change. Fuel availability 
and heterogeneity influence high-severity fire proba-
bility, but heterogeneity is insensitive to some aspects 
of forest connectivity that are important to potential 
high-severity fire transmission and thus high-severity 
area.

Objectives  To quantify the effects of fuel availabil-
ity, heterogeneity, and connectivity on the proportion 
of forest area burned at high-severity (high-severity 
burn area). To use the extreme 2020 fire season to 
consider how climate change could affect high-sever-
ity burn area relationships.
Methods  We used datasets derived from remote 
sensing to quantify effects of forest fuel availability, 
heterogeneity, and connectivity on extreme (95th per-
centile) high-severity burn areas in western US conif-
erous watersheds from 2001 to 2020. We developed a 
connectivity metric to quantify potential high-severity 
fire transmission.
Results  High-severity burn area increased with 
increasing fuel availability and connectivity and 
decreased with increasing heterogeneity. In 2020, 
multiple large high-severity burn areas occurred in 
forests with high fuel availability, which only had 
small high-severity burn areas prior to 2020.
Conclusions  In forests with an annual fire sea-
son, management to limit forest connectivity and 
fuel accumulation and increase heterogeneity could 
mitigate the potential for large high-severity fires. In 
forests where climate usually limits fire, large high-
severity fires may occur more frequently if climate 
change increases the frequency of years with inad-
equate climatic barriers to wildfire.
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Introduction

Fire is a fundamental natural disturbance process in 
forest ecosystems (Agee and Skinner 2005; Bow-
man et  al. 2009; McLaughlan et  al. 2020) that can 
provide multiple ecosystem services (Pausas and 
Keeley 2019). However, in the western US, climate 
change and past management have altered forest fire 
regimes (Agee and Skinner 2005; Abatzoglou and 
Williams 2016; Hessburg et  al. 2021). Fire suppres-
sion has reduced fire frequency which, coupled with 
increased fuel aridity driven by climate change, has 
led to increasing forest area burned and increasing 
fire severity (Abatzoglou and Williams 2016; North 
et  al. 2021; Juang et  al. 2022). The area burned at 
high-severity in western North American forests 
has increased eightfold since 1985 (Parks and Abat-
zoglou 2020) and there is evidence from coniferous 
forests in California that the size of high-severity fire 
patches is increasing (Stevens et al. 2017; Steel et al. 
2018). Increasingly frequent high-severity fire has 
widespread impacts to forest ecosystem services and 
society, including higher risks of post-fire forest con-
version to shrubland (Coop et  al. 2020), challenges 
to water resources management (Bladon et al. 2014; 
Rhoades et al. 2019), and public health impacts asso-
ciated with wildfire smoke exposure (Liu et al. 2016; 
Stowell et al. 2019; Burke et al. 2021).

The potential forest area burned at high-severity 
is a function of weather, topography, climate, and the 
amount and arrangement of fuel (Littell et al. 2009). 
Regionally, climate is an important determinant of 
forest flammability and locally, forest structure, fuel 
availability, weather, and topography influence wild-
fire behavior and severity (Agee and Skinner 2005). 
In climate-limited systems, cool and wet conditions 
inhibit wildfire ignition and spread most years, caus-
ing long periods between fire events and an accumu-
lation of biomass. In systems that have an annual fire 
season, known as fuel-limited systems, conditions 
during the fire season are almost always conducive to 
burning and fuel availability and structure determine 
flammability (Krawchuk and Moritz 2011; Steel et al. 
2015; Pausas and Paula 2012). However, the lack of 
recent fire in these fuel-limited systems, owing to 
fire suppression and exclusion policies, allowed for 
uncharacteristically high fuel accumulations, which 
increases flammability (Stephens and Fulé 2005; 
Hagmann et al. 2021).

Fuel availability, forest heterogeneity, and forest 
connectivity influence fire behavior and fire severity 
in different ways. Fuel availability, or the amount of 
fuel at a single location, has a strong influence on the 
probability of high-severity fire at that location (Parks 
et  al. 2018; Koontz et  al. 2020). In previous stud-
ies, remotely-sensed vegetation indices including the 
normalized difference vegetation index (NDVI) have 
been used as proxies for fuel availability (Parks et al. 
2018; Koontz et  al. 2020). Forest heterogeneity in 
the neighborhood surrounding a location influences 
the probability of high-severity fire at that location 
(Koontz et al. 2020; Steel et al. 2021). Standard devi-
ation in either NDVI or vegetation cover (Steel et al. 
2021) within a neighborhood surrounding a location 
have been used in recent studies to quantify forest 
heterogeneity. At the neighborhood or local scale that 
has been used in these studies, greater forest hetero-
geneity in the neighborhood surrounding a location 
may correspond to discontinuity in fuel availability 
(Koontz et  al. 2020) and therefore provide a way to 
quantify forest connectivity. However, it may be an 
indirect measure of fuel connectivity in larger neigh-
borhoods, i.e., landscapes because it is insensitive to 
the spatial arrangement of fuels within the landscape. 
A landscape with high fuel availability in half of its 
total area and low fuel availability in the remaining 
half of its area would have high fuel heterogeneity, 
but depending on the spatial arrangement of the loca-
tions with low and high fuel availability, the expected 
fire behavior and thus high-severity fire probability 
could differ. For example, if the landscape consisted 
of two large patches—one with low fuel availability 
and one with high fuel availability—we would expect 
that high-severity fire would be more likely to propa-
gate across the entire patch of high fuel availability. 
On the other hand, If the landscape consisted of a 
checkerboard pattern, where locations with low and 
high fuel availability were adjacent to each other but 
locations with high fuel availability were rarely or 
never adjacent, we would expect that high-severity 
fire in one location with high fuel availability would 
be less likely to be transmitted to the other locations 
with high fuel availability, resulting in a lower pro-
portion of area burned at high severity (Hessburg 
et  al. 2015, 2021). This is an example of two forest 
landscapes with equivalent heterogeneity, but dif-
ferent forest connectivity (SI Figures Fig. S1) that 
would be expected to result in different fire behavior, 
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transmission, and severity patterns. Characterizing 
the spatial patterns of fuels is critical for determin-
ing the scale at which fuel heterogeneity influences 
fire severity (Koontz et  al. 2020). While fine-scale 
heterogeneity in fuels may slow or stop the spread of 
low intensity surface fire (e.g., Jaffe et al. 2021), more 
extreme fire behavior (wind-driven, plume-driven, 
mass fire, and long ember transport) likely requires 
much larger areas of reduced fuel to slow or stop fire 
spread (Koo et  al. 2010; Prichard et  al. 2020; Ste-
phens et al. 2022).

Management can manipulate forest connectiv-
ity, fuel availability, and heterogeneity to reduce the 
transmission of high-severity fire across forest land-
scapes (North et  al. 2021). However, understanding 
where fuel conditions are in a condition of high risk 
for the transmission of high-severity fire is important 
for managing them. In this study, we investigated how 
the availability, connectivity, and heterogeneity of 
forest cover relates to high-severity burned area at the 
watershed scale in all coniferous watersheds across 
the western United States over the last two decades 
(2001–2020). We used the mean percent forest cover 
of forested areas as a proxy for fuel availability and 
the standard deviation in forest canopy cover within 
forested locations as a proxy for fuel heterogene-
ity. We quantified forest connectivity using a set of 
landscape pattern metrics from the FRAGSTATS 
program, and also developed a new connectivity met-
ric to quantify the proportion of the forest area that 
would be susceptible to high-severity crown fire if 
high-severity crown fire was present in any single 
forest pixel. We used previously established repre-
sentations of forest cover to calculate these proxies 
for “fuels” given their comprehensive coverage and 
relatively high fidelity (Zhu et al. 2006). We expected 
the influence of fuels on high-severity burn area to be 
strongest in fuel-limited, rather than climate-limited 
systems. However, given the widespread fire activity 
experienced in the 2020 fire year across both fuel-
limited and climate-limited systems in the western 
US (Abatzoglou et  al. 2021; Higuera and Abatzo-
glou 2020; Safford et al. 2022), we expected greater 
convergence in the relationship between fuels and 
high-severity burned area. To test this hypothesis, 
we compared fuel-high-severity burned area rela-
tionships from 2001 to 2020 with the same relation-
ships excluding the 2020 fires. We used the observed 
changes in fuel-high-severity burn area relationships 

when including the 2020 fires to consider how high-
severity burn area risk could change if historically 
climate-limited systems are exposed to weakened cli-
matic barriers to wildfire with increasing frequency.

Methods

We analyzed fuel-high-severity burn area relation-
ships in coniferous forest watersheds in the western 
US. We used the Hydrological Unit Code 12 (HUC-
12) watersheds from the Watershed Boundary Data-
set. The Watershed Boundary Dataset is a dataset 
produced by the USGS that outlines watersheds in the 
United States based on topographic and hydrologic 
features, using a nested system that divides the US 
into 21 HUC-2 watersheds, 222 HUC-4 watersheds, 
370 HUC-6 watersheds, 2270 HUC-8 watersheds, 
and ~ 90,000 HUC-12 watersheds, based on a set of 
federal standards and procedures (U.S. Geological 
Survey and U.S. Department of Agriculture, Natu-
ral Resources Conservation Service 2013). We used 
HUC-12 watersheds as our unit of analysis, which 
range in size from 10,000 acres to 40,000 acres. The 
Watershed Boundary Dataset including the HUC-12 
watersheds is available for public download at https://​
www.​usgs.​gov/​natio​nal-​hydro​graphy/​access-​natio​nal-​
hydro​graphy-​produ​cts. To identify coniferous forest 
HUC-12 watersheds in the western US, we quantified 
coniferous forest cover within watersheds, and used 
the LANDFIRE Existing Vegetation Type (EVT) and 
Biophysical Settings (BpS) data products to calculate 
the proportion of pixels within the watershed that 
were non-flammable, developed or agricultural, and 
the proportion of vegetated pixels that were conifer-
ous forest. We included watersheds if at least 75% of 
the pixels were flammable, no greater than 50% of 
pixels were developed or agricultural, and if at least 
25% of the vegetated pixels were coniferous forest. 
From the BpS GROUPVEG classification, we consid-
ered the “Conifer”, “Conifer-Hardwood,” and “Peat-
land Forest” categories as coniferous forest. Based on 
this definition for a coniferous watershed, there were 
11,962 HUC-12 watersheds in our dataset. However, 
there were 3493 fires in those watersheds during 
the study period, with the inclusion criteria detailed 
below. Therefore, we modeled relationships between 
fuel conditions and high-severity burn area in those 
3493 fires in watersheds, and then assessed spatial 

https://www.usgs.gov/national-hydrography/access-national-hydrography-products
https://www.usgs.gov/national-hydrography/access-national-hydrography-products
https://www.usgs.gov/national-hydrography/access-national-hydrography-products
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variability in the potential size of high severity burn 
areas by using the model to predict high-severity burn 
area on each of the 11,962 coniferous watersheds.

Quantifying pre‑fire forest fuel availability, 
variability, and structure

We used LANDFIRE data to quantify pre-fire fuel 
characteristics within the predominantly coniferous 
HUC-12 watersheds. The LANDFIRE program pro-
vides a set of continuous spatial datasets that quan-
tify a wide range of vegetation, disturbance and 
topographic attributes for land in the United States 
(Rollins 2009). LANDFIRE datasets were developed 
by using Landsat imagery, topographic data from the 
National Elevation Dataset (NED), soils data from 
the State Soil Geographic (STATSGO) database, and 
weather and topographic data to predict attributes 
measured in the LANDFIRE field-referenced data-
base, an extensive set of geo-referenced sampling 
plots, using classification and regression tree algo-
rithms (Zhu et  al. 2006; Rollins 2009; Reeves et  al. 
2009). LANDFIRE datasets were originally devel-
oped using circa 2001 Landsat imagery, and the base 
maps were updated using circa 2016 Landsat imagery. 
LANDFIRE data is available for public download at 
www.​landf​ire.​gov.

To quantify forest fuel availability, connectivity, 
and heterogeneity within each HUC-12 watershed, we 
derived metrics from the LANDFIRE existing vegeta-
tion cover and canopy bulk density data products. We 
used these two data products because their reported 
prediction accuracy was reasonable enough to capture 
broad-scale variation—the R correlation coefficient 
for predicted versus observed canopy bulk density 
ranged from 0.45 to 0.85 across 12 LANDFIRE map-
ping zones and R2 for forest canopy cover was 0.78 to 
0.88 in two mapping zones (Zhu et al. 2006). To clas-
sify burnable and non-burnable cover for the quan-
tification of the proportion non-burnable and forest 
connectivity by burnable cover, we used the LAND-
FIRE 40 Scott and Burgan Fire Behavior fuel model 
data product. All fuel models within the 40 Scott and 
Burgan ‘nonburnable’ fuel types were classified as 
non-burnable cover, including NB1: urban/developed, 
NB2: snow/ice, NB3: agricultural, NB8: open water, 
and NB9: barren (Scott and Burgan 2005).

We calculated five metrics of landscape composi-
tion (Gustafson 1998) that quantified fuel availability 

and variability, including mean forest canopy cover 
of forested pixels in the watershed, mean canopy bulk 
density of forested pixels in the watershed, and the pro-
portion of pixels within the watershed that were not 
burnable as measures of fuel availability and standard 
deviation of canopy cover of forested pixels within the 
watershed and standard deviation of canopy bulk den-
sity of forested pixels within the watershed as measures 
of fuel variability (SI Tables Table  S1). The existing 
vegetation cover data product classifies pixels within 
categories of tree cover—e.g. between 10 and 20% tree 
cover. To calculate mean canopy cover, we calculated 
the midpoint of the class (e.g. 15% canopy cover). As 
measures of landscape configuration (Gustafson 1998) 
or forest fuel structure, we used the existing vegetation 
cover to classify pixels as either forest or non-forest and 
calculated five separate metrics: edge density, patch 
density, proportion of like adjacency, forest connectiv-
ity by forest cover, and forest connectivity by burnable 
cover (SI Tables Table S1). Edge density is a measure 
of the length of the edges of a cover type as a fraction 
of the landscape area. Patch density is a measure of the 
number of patches of a cover type as a fraction of the 
landscape area. The proportion of like adjacency is the 
number of adjacencies between cells of a single cover 
type (like adjacencies) as a fraction of the total num-
ber of adjacencies between cells that involve that cover 
type, multiplied by 100. For both patch density and the 
proportion of like adjacency, a value is calculated for 
each cover type (forest and non-forest). We calculated 
patch density as the density of non-forested patches, 
and the proportion of like adjacency as the proportion 
of like adjacency of forested patches (McGarigal and 
Marks 1995). Edge density, patch density, and propor-
tion of like adjacency were originally developed as part 
of the FRAGSTATS program, whereas forest connec-
tivity by forest cover and forest connectivity by burn-
able cover were developed specifically for quantifying 
forest connectivity relevant to wildfire spread in this 
study. We developed the following metric of forest con-
nectivity that quantifies the average proportion of forest 
area that would be susceptible to catching high-severity 
fire if any single forest pixel had high-severity crown 
fire, defined as:

Forest Connectivity =

1

N

∑N

i=1
Fi

F

http://www.landfire.gov
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where forest connectivity is the area of forest con-
nected to (i.e. in the same patch) as each individual 
forest pixel ( Fi) , averaged over all forest pixels in 
the watershed (N), as a proportion of the total for-
ested area within the watershed ( F). To understand 
the expected behavior of the metrics of landscape 
configuration (Neel et al. 2004), including the forest 
connectivity metric, we generated three hypotheti-
cal watersheds with varying forest cover patterns and 
calculated each metric of landscape configuration for 
each watershed (SI Figures Fig. S1). The forest con-
nectivity metric approaches 1, when every forest pixel 
in the watershed is connected to 100% of the other 
forest pixels in the watershed (Fig. S1a), and has a 
minimum possible value of zero, which occurs when 
every forest pixel in the watershed is only adjacent to 
non-forest pixels within the watershed (Fig. S1c). We 
calculated forest connectivity by forest cover and for-
est connectivity by burnable cover. To calculate for-
est connectivity by forest cover, forest cells were only 
considered connected if they were connected by other 
forest cells, i.e. if they were part of a single patch of 
forest. To calculate forest connectivity by burnable 
cover, forest cells were considered connected if they 
were connected by any burnable cell types (i.e. if 
the forest cells were within a patch of burnable cell 
types, where burnable cell types included, but were 
not limited to, forest cells). For both forest connec-
tivity by forest cover and by burnable cover, pixels 
were considered connected (i.e. in the same patch) 
if they shared a side, but those that were only con-
nected on the diagonal were not (e.g. rook’s neighbor-
hood). The forest connectivity by forest cover metric 
is somewhat similar to the mean patch area of the 
forest class divided by the total class area of the for-
est class (where the mean patch area and total class 
area are each metrics from FRAGSTATS, McGarigal 
et al. 2012) with two key differences specific to wild-
fire behavior applications: (1) in the forest connectiv-
ity metric, the area of forest connected to each indi-
vidual forest pixel (Fi) is the area of the patch minus 
the area of the one pixel, to calculate the remaining 
forest area that would be susceptible to catching high-
severity wildfire if the focal pixel was on fire, and (2) 
mean patch area is calculated on a per pixel, rather 
than a per patch basis, in order to quantify the aver-
age proportion of remaining forest area that would 
be susceptible to catching high-severity wildfire if 
any individual pixel had high-severity wildfire. We 

used the landscape metrics R package to calculate 
edge density, patch density, and the proportion of 
like adjacency, and to delineate forest patches to cal-
culate the number of cells connected to a focal cell 
for  forest connectivity by forest cover and to deline-
ate non-burnable patches for forest connectivity by 
burnable cover (Hesselbarth et  al. 2019). Although 
cross-watershed wildfire transmission can occur, we 
calculated all metrics at the scale of the HUC-12 
watershed.

We used the LANDFIRE base map data products 
from 2001 to 2016 to derive the fuel availability, vari-
ability, and structure characteristics (described above 
and in SI Tables Table S1 and shown in Fig. 1) that 
we used as predictor variables for high-severity burn 
area (as described below and shown in Fig. 1) of fires 
that occurred following the most recent base maps. 
Specifically, we used the data products from the 2001 
base map to calculate the fuel predictor variables for 
fires that occurred between 2001 and 2015, and used 
the data products from the 2016 base map as predic-
tor variables to calculate the fuel predictor variables 
for fires that occurred between 2016 and 2020.

In order to mitigate the effects of changes in fuel 
characteristics that occurred between the LANDFIRE 
Landsat imagery acquisition date (circa 2001 or circa 
2016) and the date of subsequent fires (2001–2015 or 
2016–2020), we did not include fires that burned over 
areas that had undergone significant disturbance due 
to fire in between the imagery acquisition date and 
the year of the fire. Specifically, if a fire burned over 
45 hectares within a watershed, we did not include 
any subsequent fire that burned in that watershed 
prior to the update of the LANDFIRE data products 
with 2016 Landsat imagery, or if a fire burned over 
45 hectares within a watershed after 2016, we did 
not include any subsequent fires in that watershed 
(because there has not been a new base map created 
since 2016). This reduced the effects of fire-water-
shed combinations in the analysis that burned over 
vegetation conditions that were likely to have been 
substantially altered by fire disturbances after the 
Landsat imagery was collected but prior to the fire.

Calculating high‑severity burned area

We used fire perimeters from the Monitoring Trends 
in Burn Severity (MTBS) program for fires that 
occurred between 2001 and 2019, excluding fires 
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that were classified as prescribed fires in the MTBS 
dataset (Eidenshink et al. 2007). MTBS is a program 
of the U.S. Department of Agriculture Forest Ser-
vice and the U.S. Geological Survey that provides 
maps of fire extent and severity of large fires in the 
United States (Eidenshink et  al. 2007) and is avail-
able for public download at www.​mtbs.​gov. In the 
western United States, MTBS maps fires that are at 
least 1000 acres equivalent to approximately 400 ha. 
MTBS data for western US wildfires were not yet 
available for 2020 fires at the time of this analysis, 
and we therefore used fire perimeters from the Fire 
Events Delineation (FIRED) dataset. FIRED is an 
algorithm and database that maps fire extents from 
the MODIS burned area product (Balch et  al. 2020) 
and is available for download at https://​schol​ar.​color​
ado.​edu/​conce​rn/​datas​ets/​8336h​304x (St. Denis et al. 
2022). A comparison between the size of individual 
MTBS and FIRED fire events suggested strong agree-
ment between the two datasets (R2 = 0.92, Balch et al. 
2020). FIRED maps fires larger than 21  ha (Balch 
et al. 2020). To quantify burn severity within MTBS 

(2001–2019) and FIRED (2020) fire perimeters, we 
used an algorithm that predicts the Composite Burn 
Index (CBI) from multiple Landsat spectral indices, 
climate, and latitude from publicly-available data and 
Google Earth Engine code (Parks et  al. 2019). To 
calculate high-severity burn area within each water-
shed, we calculated the proportion of the forested 
area in the watershed that burned at high-severity, 
where high-severity was defined as CBI ≥ 2.25, cor-
responding to stand-replacing fire and greater than 
95% canopy mortality (Miller et  al. 2009). The pre-
fire forested area in the watershed for the calculation 
of the proportion of the forested area in the watershed 
burned at high-severity was determined from the 
LANDFIRE existing vegetation cover classification 
(forest vs. non-forest) data product. The distribution 
of watersheds that included any area burned con-
tained a large proportion of watersheds in which only 
a small area of the watershed burned. We restricted 
the analysis to watershed-fire combinations in which 
at least 10% of the total area of the watershed burned, 
regardless of cover type. Hereafter we use the term 

Fig. 1   Coniferous HUC-12 watersheds in the western US that 
burned between 2001 and 2020 and a subset of fuel predictor 
variables and the high-severity burned area response variable 
calculated for each burned watershed in a zoomed-in region. 
Light blue shading in panel (a) shows the 11,962 coniferous 
forest HUC-12 watersheds in the western US, and dark blue 
shading shows burned coniferous forest watersheds (conifer-
ous forest watersheds with fires that occurred between 2001 
and 2020 and burned over at least 10% of the total watershed 

area, SI Methods). Panels (b)–(e) show burned watersheds for 
a zoomed-in region of the Northern US Rockies, where (b) 
shows the proportion of forested area burned at high-severity, 
and panels (c)–(e) show a subset of the fuel predictor vari-
ables. In each panel, the axis legends show the upper boundary, 
rounded to two decimal places, of ten quantiles of each pre-
dictor variable, where the color of each watershed represents 
which of the ten quantiles of each variable it was within

http://www.mtbs.gov
https://scholar.colorado.edu/concern/datasets/8336h304x
https://scholar.colorado.edu/concern/datasets/8336h304x
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“high-severity burn area” to signify the proportion of 
the forested area in the watershed that burned at high-
severity, as defined above.

Statistical analysis

Fires in watersheds where large forested areas within 
the watershed burned at high-severity occurred 
rarely (SI Figures Fig. S3), but have the largest con-
sequences for forest ecosystem services and forest 
regeneration following wildfire (Coop et al. 2020). To 
focus on these rare but high-consequence events, we 
used quantile regression (Koenker and Bassett 1978; 
Koenker and Hallock 2001) to model the influence of 
fuel on the 95th percentile of proportion of the for-
ested area in the watershed burned at high-severity, 
referred to as high-severity burn area throughout the 
manuscript. This approach of focusing on the poten-
tial for extreme outcomes by using quantile regres-
sion is analogous to an approach commonly used in 
fire behavior simulations, which often simulate wild-
fire behavior under the 90th or 97.5th percentile of 
weather conditions, in order to inform the design of 
fuel treatments that will be effective during extreme 
conditions (Stephens et  al. 2009). In this study, we 
used statistical modeling rather than a simulation 
modeling approach, but were similarly focused on 
understanding what fuel conditions have the poten-
tial to lead to the most extreme outcomes. Quan-
tile regression therefore allowed us to ask whether 
and how fuel characteristics affected the size of the 
extremes of forest area burned at high-severity. High-
severity burn area is a proportion and was therefore 
bounded between 0 and 1. We used logistic quan-
tile regression, appropriate for analysis of bounded 
outcomes, by we applying a logistic transformation 
to high-severity burn area prior to fitting the model 
(Bottai et al. 2010):

where y is the high-severity burn area (as defined in 
the “Methods” section ‘Calculating High-Severity 
Burn Area’), ymax is the maximum possible high-
severity burn area and is equal to 1, and ymin is the 
minimum possible high-severity burn area is equal to 
zero. A logistic transformation was used to account 
for the bounded nature of the data as explained in 

logit(y) = log

(
y − ymin

)
(
ymax − y

)

Bottai et al. (2010) and is commonly applied in stud-
ies that use quantile regression to model propor-
tion data (e.g. Guo et  al. 2021; Sofaer et  al. 2022). 
All quantile regression analyses were done using the 
quantreg R package (Koenker 2018). All model pre-
dictions were back-transformed to yield predictions 
ranging from 0 to 1 (Bottai et al. 2010). Prior to quan-
tile regression modeling, we used a min–max scalar 
to normalize all predictor variables to range from 
− 1 to 1. This normalization allowed us to interpret 
the model coefficients for each predictor variable as 
the change in high-severity burn area that would be 
expected from a change over half of the range of each 
of the predictor variables.

We modeled the data with and without the 
2020 data because of the large number of fires that 
occurred in the Pacific Northwest during the 2020 
fire season. Fire in this region of the country is often 
considered climate-limited and we sought to deter-
mine how that might alter the model. To determine 
whether to include quadratic terms for predictor vari-
ables in the model, we first inspected scatterplots of 
the relationships between each predictor variable and 
high-severity burn area in 2001–2019 and 2001–2020 
(SI Figures Figs. S7, S8). If scatterplots suggested 
the presence of non-linearity that could be plausi-
bly explained by an ecological process for either set 
of years, we included quadratic terms in the model 
for both sets of years (in order to prevent differences 
in model form between years from influencing our 
inferences about the differences between the two 
sets of years). Using this process, we included quad-
ratic terms for mean canopy cover and the standard 
deviation in canopy cover. Scatterplots suggested a 
hump-shaped relationship between high-severity burn 
area and mean canopy cover from 2001 to 2019 (SI 
Figures Fig. S8), which could be explained by the 
intermediate fire-productivity hypothesis (Pausas 
and Paula 2012). For standard deviation in canopy 
cover, the non-linear relationship could be explained 
by the fact that watersheds with the lowest standard 
deviation in canopy cover may have been more likely 
to have lower canopy cover overall, correspond-
ing to lower high-severity burn area. However, with 
increasing standard deviation in canopy cover, mean 
canopy cover and standard deviation in canopy cover 
were less likely to be coupled, and we expected the 
relationship between standard deviation in canopy 
cover and high-severity burn area to resemble the 
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relationship between heterogeneity in NDVI and 
probability of high-severity fire established by Koontz 
et al. (2020).

Many of the variables we calculated to describe 
fuel characteristics, particularly the variables that 
described forest fuel structure, calculated similar 
aspects of forest fuel structure and we anticipated 
that they could be correlated. To reduce multicol-
linearity among the predictor variables, we used an 
approach used by Dahlin et  al. (2013). The steps of 
this approach are: (1) calculate the Pearson R corre-
lation coefficient among all pairwise combinations 
of predictor variables, and (2) identify variable pairs 
with a Pearson R correlation coefficient greater than 
0.5, (3) calculate the correlation between each vari-
able within the correlated pair and the response vari-
able independently, and (4) retain the predictor vari-
able with the higher correlation with the dependent 
variable and remove the predictor variable with the 
lower correlation coefficient with the dependent vari-
able. Because we used quantile regression, for step 
(3), we calculated the goodness-of-fit metric for quan-
tile regression for the 95th percentile for the correla-
tions between each individual with the pair of predic-
tor variables, rather than the Pearson R correlation 
coefficient (Koenker and Machado 2012). To calcu-
late quantile regression goodness of fit, we used the 
WRTDSTidal R package (Beck 2019). We simplified 
redundant predictor variables separately for models 
including 2001–2019 data and 2001–2020 data. After 
this step of excluding redundant predictor variables, 
we added an interaction term between mean canopy 
cover and forest connectivity by forest cover. The 
final form of the model was:

Qhigh−severityburnarea(� = 0.95|x) = �0(�)

+β1 Mean Canopy Cover(�)

+β2 Mean Canopy Cover2(�)

+ β4 SD Canopy Cover(�)

+ β5 SD Canopy Cover2(�)

+ β6 SD Canopy Bulk Density(�)

+ β8 Edge Density(�)

+ β9 Proportion Not Burnable(�)

+ β11 Forest Connectivity by Burnable Cover (�)

+β12 Connectivity by Forest Cover (�)

+β13 Connectivity by Forest Cover ∗ Mean Canopy Cover (�)

+β14 Connectivity by Forest Cover ∗ Mean Canopy Cover2(�)

We compared the modeled relationships of high-
severity burn area to fuel availability and structure 
to a null model that assumed that variability in high-
severity burn area was structurally unrelated to vari-
ability in fuel availability. The null model includes 
only an intercept term, as defined by:

Therefore, predictions from the null model are equiv-
alent to the 95th percentile of high-severity burn area 
and do not vary with any of the fuel availability or 
structure variables.

Model coefficients and confidence intervals

To calculate confidence intervals of model coeffi-
cients, we calculated the coefficients for each variable 
using xy-pairs bootstrapping with 10,000 replications 
to generate a sample of coefficient estimates (Koen-
ker 1994). We calculated the mean, the 2.5 percentile, 
and the 97.5 percentile of the 10,000 estimates.

Model responses and confidence intervals

To calculate the modeled responses to mean canopy 
cover, standard deviation in canopy cover, and forest 
connectivity by forest cover, we used the full model 
including 2020 fires to predict high-severity burned 
forest area and its 95% confidence intervals across 
the full range of each predictor variable, while hold-
ing all other predictor variables constant at their 
median values. We only modeled the responses for 
these three predictor variables because these were 
the predictor variables with coefficient confidence 
interval estimates that did not include zero. To evalu-
ate the effect of the interaction between mean canopy 
cover and forest connectivity by forest cover on high-
severity burn area, we used the full model to predict 
high-severity burn area and its 95% confidence inter-
vals across the full range of forest connectivity by 
forest cover, while holding mean canopy cover con-
stant at each of ten quantiles of mean canopy cover 
(0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 
and 0.95). All other variables were held constant at 
their median values. We generated predictions and 
confidence intervals from the null model across the 
full range of each predictor variable using the same 
process. However, because the null model did not 

Qhigh-severity burn area(� = 0.95) = �0(�)
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contain coefficient terms for any of the predictor 
variables, the predictions are constant with respect to 
each predictor variable.

High‑severity burn area predictions and uncertainty

We used the model developed from fires that occurred 
from 2001 to 2020 to predict high-severity burn area 
and its confidence intervals for all 11,962 coniferous 
watersheds.

We used Bailey’s ecoregions separated into the 
Nature Conservancy Terrestrial Ecoregions (Bai-
ley 1998; Olson and Dinerstein 2002) to assess how 
high-severity burned forest area changed from includ-
ing 2020 data varied according to ecoregion-level 
variation in climate. The Nature Conservancy Ter-
restrial Ecoregions are large land areas that contain 
distinct species assemblages and communities, and 
were determined based on synthesis of previous bio-
geographical research (Olson and Dinerstein 2002). 
These ecoregions are a common unit of analysis in 
studies of fire regimes and fire severity (Parks et  al. 
2018; Hessburg et al. 2019) and are available for pub-
lic download at https://​geosp​atial.​tnc.​org/. To allow 
for comparison of our results in the context of a previ-
ous framework of climate and fuel limitation across 
ecoregions in western North America and to enable 
plotting across a range of ecoregions, we only consid-
ered watersheds within the set of Bailey’s ecoregions 
used by Hessburg et al. (2019), except for one ecore-
gion located in Mexico where LANDFIRE data is not 
available, resulting in 9994 coniferous forest water-
sheds in 18 unique ecoregions. For ecoregions that 
contained area in both the continental US and Canada 
or Mexico, we only considered watersheds within the 
continental United States where LANDFIRE data was 
available. We used long term (1958–2020) climatic 
water deficit as a proxy for the degree of climate vs. 
fuel limitation, with the assumption that lower cli-
matic water deficit corresponds to higher climate lim-
itation and lower aridity. Climatic water deficit is the 
difference between the potential evapotranspiration 
and the actual evapotranspiration (Stephenson 1990). 
It integrates the effects of temperature, humidity, and 
precipitation on fuel aridity (Abatzoglou and Wil-
liams 2016). We calculated mean climatic water defi-
cit as the mean climatic water deficit from all monthly 
records from 1958 to 2020 from TerraClimate (Abat-
zoglou et  al. 2018) in Google Earth Engine. To 

calculate the ecoregion-level mean climatic water 
deficit, we averaged the climatic water deficit over all 
4 km pixels in the ecoregion.

Results

Across 3493 fires in watersheds, mean canopy cover, 
heterogeneity in canopy cover, and forest connec-
tivity by forest had robust effects on high-severity 
burned area, measured as the 95th percentile of pro-
portion of the forested area within the watershed that 
burned at high-severity. The 95% confidence inter-
vals of the standardized coefficients of mean canopy 
cover, standard deviation in canopy cover, and for-
est connectivity by forest on high-severity burn area 
excluded zero (Fig. 2a).

Mean forest canopy cover, a proxy for fuel avail-
ability, had a strong positive effect on high-severity 
burn area within a watershed (βMean canopy cover = 0.34, 
95% CI [0.25, 0.42], βMean canopy cover

2 = − 0.12, 95% 
CI [− 0.30, 0.06], Fig.  2, SI Figures Fig. S9). Het-
erogeneity in forest cover, a proxy for fuel discontinu-
ity, had a negative effect on high-severity burn area 
(βSD canopy cover = − 0.18, 95% CI [− 0.25, − 0.1] and 
βSD canopy cover

2 = − 0.22, 95% CI [− 0.33, − 0.03], 
Fig.  2, SI Figures Fig. S9). Forest connectivity by 
forest had a weak but robust positive effect on high-
severity burn area (βForest connectivity = 0.07, 95% CI 
[0.02, 0.13], Fig. 2, SI Figures Fig. S9).

Predicted high-severity burn area varied substan-
tially among the 11,962 coniferous forest HUC-12 
watersheds in the western US (Fig. 3a). The percent-
age of the forested area predicted to burn at high-
severity varied from 3 to 80%, and was highest for 
forests in the Pacific Northwest, the northern coast 
of California, and the Sierra Nevada (black colored 
watersheds in Fig.  3a). Watersheds with higher 
uncertainty in predicted high-severity burn area, spe-
cifically those with a 95% confidence interval size 
greater than 0.2, were concentrated in the West Cas-
cades, the North Cascades, and the Pacific Northwest 
Coast (Fig. 3b, ecoregion names in Fig. 4b).

The Pacific Northwest is home to many regions 
characterized by cool, wet climate conditions that 
support productive forests with fire regimes that are 
usually climate-limited (Littell et  al. 2009; Hess-
burg et  al. 2019). In these systems, climate condi-
tions that are conducive to widespread burning 

https://geospatial.tnc.org/
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occur infrequently, but when they occur, the system 
is highly flammable due to the large amounts of fuel 
that accumulate during the long fire-free periods. 
During 2020, mesic forests in the Pacific Northwest 
were exposed to extreme fire conditions and several 
very large fires of spatial extents that were unprec-
edented in the contemporary record (Abatzoglou 
et  al. 2021), but consistent with the historic fire 
regime of the region (Reilly et al. 2022). From 2001 
to 2019, fuel-high-severity burn area relationships 
showed a condition where high canopy cover, which 
is common in the Pacific Northwest (SI Figures 
Fig. S4), was less capable of supporting large high-
severity burn areas (Fig.  4a). Yet, in 2020, large 
high-severity burn areas occurred in these high 
canopy cover forests, particularly in climate-limited 

ecoregions of the Pacific Northwest (ecoregions 
with low climatic water deficit, shown as yel-
low and light orange points in Fig.  4b). However, 
exceptionally large high-severity burn areas also 
occurred in less climate-limited ecoregions (ecore-
gions with higher climatic water deficit are shown 
as purple and black points in Fig. 4b). Including the 
2020 fires in the analysis changed the relationship 
between canopy cover and high-severity burn area 
by increasing high-severity burn area at high mean 
canopy cover values (Fig. 4b).

Fig. 2   Responses of the 
95th percentile of high-
severity burned forest area 
(referred to as high-severity 
burn area in the manuscript 
text) to forest fuel condi-
tions from 2001 to 2020. 
The standardized coeffi-
cients and 95% confidence 
intervals for all variables 
included in the model (a), 
and (b–d) the predicted 
95th percentile high-sever-
ity burned forest area on the 
y-axis, modeled as a func-
tion of each predictor vari-
able (scaled) for which the 
95% confidence interval of 
the standardized coefficient 
did not include zero: mean 
canopy cover (b), standard 
deviation in canopy cover 
(c), and forest connectivity 
(d). Gray dashed lines and 
gray shading shows the null 
model and 95% confidence 
intervals of the 95th per-
centile high-severity burned 
forest area, and red lines 
and red shading shows the 
predicted response and 95% 
confidence interval of the 
response of the 95th percen-
tile of high-severity burned 
forest area to each scaled 
predictor variable
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Discussion

The increasing forest area burned at high-severity 
in recent forest wildfires (Parks and Abatzoglou 
2020) threatens forest regeneration (Coop et  al. 
2020), wildlife habitat (Jones et al. 2016), and water 
resources (Williams et al. 2022). Recent studies have 

demonstrated the importance of fuel properties to 
the probability of high-severity fire at individual pix-
els (Parks et al. 2018; Koontz et al. 2020). However, 
wildfire is a contagious process where the area of for-
est with the potential to burn at high-severity depends 
on the availability and mosaic of fuel at multiple 
scales (Hagmann et al. 2021). Here, we demonstrate 
that forest area burned at high-severity at the HUC-
12 watershed scale increases with increasing forest 
fuel availability and connectivity, and decreases with 
increasing forest cover heterogeneity in coniferous 
forest watersheds in the western US from 2001 to 
2020. Our results suggest that in forests in the west-
ern US with fuel limited fire regimes, fuel treatments 
to decrease forest connectivity, increase heterogene-
ity, and reduce fuel availability could limit the for-
ested area burned at high-severity within watersheds. 
In forests with usually climate-limited fire regimes, 
exceptionally high fuel availability increases the risk 
of large forest areas burned at high-severity when cli-
mate conditions are conducive to burning.

Forest area burned at high‑severity increases with 
increasing fuel availability and connectivity and 
decreases with increasing heterogeneity

Mean canopy cover had a strong positive effect on 
high-severity burned area (Fig.  2), consistent with 
previous results that remotely-sensed estimates of 
fuel characteristics are strong predictors of the prob-
ability of high-severity fire at a single pixel from the 
western US (Parks et al. 2018) and that the probabil-
ity of high-severity fire responds positively to NDVI 
in yellow pine and mixed-conifer forests in the Sierra 
Nevada (Koontz et  al. 2020). Higher mean canopy 
cover is indicative of greater canopy fuel availability, 
which facilitates the spread of high-severity crown 
fires.

The relationship between tree crown connectiv-
ity and the potential transmission of crown fires is a 
fundamental concept in wildfire behavior modeling 
and fuel treatment planning (Agee and Skinner 2005; 
Ager et  al. 2014; North et  al. 2021) that has been 
demonstrated in field studies showing that greater 
canopy separation is associated with lower fire-
induced tree mortality (North and Hurteau 2011; Saf-
ford et al. 2012). The positive response of high-sever-
ity burn area to forest connectivity by forest reported 
here (Fig.  2) provides observational evidence in 

Fig. 3   The predicted 95th percentile of high-severity burned 
forest area and its uncertainty, as predicted from fuel avail-
ability and structure, varies among watersheds in the western 
US. Panels (a) and (b) show the predicted 95th percentile of 
proportion forest burned at high-severity in each watershed 
in the western US from the model. For the model predictions 
(a), the legend labels are the upper boundary, rounded to two 
decimal places, of each of ten quantiles of predicted 95th per-
centile of high-severity burned forest area predictions aggre-
gated across predictions. For the uncertainty (c), the legend 
shows the upper boundary, rounded to two decimal places, of 
ten equally-spaced categories of 95% confidence interval size 
from the minimum to the maximum 95% confidence interval 
size. Watersheds with at least 50% of their area burned since 
the imagery was collected (2016–2020) are hashed. However, 
this data did not include fires from 2021 or 2022, therefore 
watersheds where more than 50% of the watershed burned dur-
ing 2021 or 2022 are not classified here



2512	 Landsc Ecol (2023) 38:2501–2518

1 3
Vol:. (1234567890)

support of this fundamental concept over a larger spa-
tial extent than previously studied. Although a vari-
ety of metrics have been developed to quantify forest 
landscape patterns related to connectivity (McGarigal 
and Marks 1995), we found that at the watershed-
scale, the metric of forest connectivity that we devel-
oped specifically to account for wildfire behavior 
was more sensitive to the type of variation in forest 

connectivity expected to be relevant to wildfire propa-
gation (Fig. S1), and was also a more robust predictor 
of high-severity burn area. Given that the controls on 
area burned vary as a function of scale (i.e., top-down 
controls at regional scales and bottom-up controls at 
local scales, Heyerdahl et al. 2001) and that the sen-
sitivity of wildfire spread to fuel continuity can be 
diminished depending on fire behavior, the scale at 

West Cascades

California
North Coast

Sierra Nevada

Southern
Rocky
Mountains

Legend
Watersheds with fire
from 2001-2019

High-severity burn area of
watersheds with fire in 2020

(c)

(a) 2001-2019 (b) 2001-2020 Ecoregion
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which fuel continuity is evaluated should change with 
the scale at which fire is being evaluated. Since much 
of our understanding of fire was developed in the 
linear part of a nonlinear system (Juang et al. 2022), 
we may start finding that even at fine scales, patterns 
that used to explain fire spread are less effective as 
changing climate drives increasingly extreme wildfire 
behavior. This is an area that requires active inves-
tigation as the amount of empirical data on extreme 
wildfires increases.

There are a number of metrics for measuring 
landscape configuration which have been developed 
to incorporate insights from a range of disciplines 
(McGarigal and Marks 1995; Urban and Keitt 2001; 
Frazier 2019). However, many of these metrics are 
correlated with each other and vary along a gradient 
of adjacency (Neel et al. 2004), and as such their need 
has been questioned (2019). Others have argued that 
although metrics are correlated, the subtle differences 
lend themselves to different applications (Neel et  al. 
2004), and that metrics used in individual studies 
should be carefully chosen according to the objectives 
of the study (Gustafson 2019). The forest connectiv-
ity metric we used in this study calculates the average 
proportion of the total forest area that is connected 

to each pixel, and is therefore directly susceptible 
to catching wildfire if an individual pixel was burn-
ing at high-severity. Although the forest connectivity 
metric was correlated, to varying degrees, with the 
alternative metrics of landscape configuration (Pear-
son R Correlation Coefficients were 0.7, − 0.48, and 
0.16 for proportion of like adjacency, edge density, 
and patch density respectively, SI Tables Table  S2), 
analyses of the behavior of alternative metrics of con-
figuration on hypothetical forest cover patterns clearly 
demonstrate that the existing metrics do not capture 
the important differences in very distinct spatial pat-
terns (Fig. S1a, S1b). Furthermore, the forest connec-
tivity metric we developed was a stronger predictor of 
high-severity burn area than the other adjacency met-
rics at the scale of forest watersheds in the western 
US (Fig. 2a, Supporting Information Table S3). It is 
possible that alternative approaches for quantifying 
connectivity to high-severity fire may be effective at 
different spatial extents and grain sizes. For example, 
graph theory offers a range of metrics for quantify-
ing landscape connectivity, including incorporating 
the distance among patches into the calculation of 
connectivity (Urban and Keitt 2001). However, the 
distance between patches that results in high-severity 
fire connectivity varies significantly depending on 
fire behavior, while distance-based calculations add 
to computational intensity (Moilanen 2011). Thus, 
connectivity metrics from graph theory were not the 
best trade-off between computational tractability and 
ecological informativeness at the scale of our analy-
ses, which covered 11,962 landscapes (watersheds), 
that each had many tens of thousands of pixels. 
However, metrics from graph theory may be able to 
effectively quantify additional elements of landscape 
connectivity for wildfire applications in analyses at 
a different combination of grain size and extent (e.g. 
Aparício et  al. 2022). At the watershed-scale, our 
metric of forest connectivity is capable of represent-
ing the range of observed conditions, is more strongly 
correlated with the response variable than the other 
metrics of landscape configuration, and is based on 
first principles of wildfire behavior, meeting three of 
the four criteria for a good metric specified by Riit-
ters (2019). Evaluating this metric in other discipline-
specific contexts will determine if it meets the fourth 
criterion.

Heterogeneity in canopy cover within a watershed 
had a relatively strong negative effect on forest area 

Fig. 4   Watersheds with high canopy cover had larger high-
severity burn areas during the 2020 fire season. Gray and 
colored points show the data from 2001 to 2019 (a) and 2001–
2020 (b), where fires that occurred in 2020 and are within the 
ecoregions analyzed by Hessburg et al. 2019 are colored. The 
predicted 95th percentile of the proportion of forested area 
burned at high-severity (red lines) and 95% confidence inter-
vals (red shading) as a function of mean canopy cover (scaled) 
when only data from 2001 to 2019 is included in the model (a), 
and when data including fires from 2020 are included in the 
model (b), show the increase in predicted forest area burned 
at high-severity for the watersheds with the highest mean 
canopy cover. Gray dashed lines and gray shading shows the 
null model and 95% confidence intervals of the 95th percentile 
high-severity burned forest area for each of the time periods. In 
(b), points are colored according to the Bailey’s climatic ecore-
gions analyzed in Hessburg et al. (2019), ordered according to 
increasing long-term climatic water deficit as a proxy for rela-
tive climate limitation on fire, where lower climatic water defi-
cit corresponds to greater climate limitation on fire. Panel (c) 
shows the ecoregion boundaries (black outlines) with the four 
ecoregions with the greatest number of fires added in 2020 
labeled. Watersheds with fire in 2001–2019 are shown in gray, 
and watersheds with fire in 2020 are colored according to their 
high-severity burn area. For high-severity burn area in (c), the 
legend labels are the upper boundary, rounded to two decimal 
places, of each of six quantiles of high-severity burned forest 
area of fires that occurred in 2020

◂
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burned at high-severity—at the midpoint of the stand-
ard deviation in canopy cover predicted high-severity 
burn area was 0.53, whereas at the maximum stand-
ard deviation in canopy cover, predicted high-severity 
burn area was 0.12 (Fig. 2). These results are consist-
ent with Koontz et al. (2020) who found that in Sierra 
Nevada yellow pine and mixed-conifer forests, single 
pixels with higher heterogeneity (measured by stand-
ard deviation) in NDVI within their immediate neigh-
borhood had a lower probability of high-severity fire. 
Higher spatial heterogeneity in forest cover indicates 
high variability in forest canopy cover within the 
forested area watershed (SI Figures Fig. S2), which 
may be associated with patches within landscapes 
with insufficient forest fuel densities to maintain the 
spread of high-severity crown fire across large land-
scapes. The results we present extend the findings of 
Koontz et  al. (2020) from coniferous forests in the 
Sierra Nevada to coniferous forests across the western 
US and further show that higher fuel heterogeneity is 
associated with not only a lower probability of high-
severity fire in individual locations (Koontz et  al. 
2020), but also with smaller high-severity burn areas 
within coniferous forest watersheds.

Fuel availability and high‑severity burn area 
relationships with 2020 highlight risks to 
climate‑limited systems

Fire regimes in western US forests vary along a gra-
dient of climate-limited to fuel-limited (Littell et  al. 
2009; Hessburg et  al. 2019). The consistency of the 
hump-shaped relationship between mean canopy 
cover and high-severity burn area from 2001 to 2019 
(Fig.  4a) and the hypothesized and observed hump-
shaped relationship between fire activity and arid-
ity/productivity at the global scale (the intermediate 
fire-productivity hypothesis, Pausas and Paula 2012; 
Pausas and Ribeiro 2013), demonstrates that conifer-
ous forest watersheds in the western US cover a wide 
range of aridity/productivity and corresponding fire 
regimes. These findings from 2001 to 2019 fires are 
consistent with the notion that forests with the highest 
mean canopy cover in our analysis have primarily cli-
mate-limited fire regimes and that fuel has a relatively 
weak influence on the area burned at high-severity 
in these systems (Littell et  al. 2009; Krawchuk and 
Moritz 2011).

In 2020, widespread high-severity burning was 
observed across fuel and climate-limited systems 
in the western US (Higuera et al. 2021; Reilly et al. 
2022; Safford et  al. 2022), and globally (Boer et  al. 
2020; Talucci et  al. 2022). Somewhat surprisingly, 
including the 2020 fires changed the relationship 
between mean canopy cover and high-severity burn 
area by increasing high-severity burn area in forests 
with the highest mean canopy cover (Fig. 4b). If the 
2020 fires were simply interpreted as an extreme cli-
mate/fire weather event alone, then we would have 
expected increased high-severity burning regardless 
of fuel conditions. However, fires that occurred dur-
ing 2020 in forests with low fuel availability (lower 
than the midpoint of mean canopy cover) had high-
severity burn areas that were within the range of 
high-severity burn areas that had been observed prior 
to 2020, whereas forests with high fuel availability 
(higher than the midpoint of mean canopy cover) 
had high-severity burn areas that were larger than 
had been observed prior to 2020 (Fig. 4b). When fire 
weather conditions are conducive to burning, these 
high mean canopy cover forests can support substan-
tial proportions of high-severity fire.

Climate change has increased fuel aridity in 
western US forests (Abatzoglou and Williams 
2016), in both climate-limited and fuel-limited sys-
tems (Rupp et al. 2017). In climate-limited systems, 
reduced climatic barriers to wildfire, specifically 
elevated fuel aridity (Higuera and Abatzoglou 2020; 
Higuera et  al. 2021), or exceptional combinations 
of fuel aridity and wind speed (Abatzoglou et  al. 
2021) were important drivers of increased high-
severity burning in 2020. Although unprecedented 
in the contemporary record, the climatic conditions 
and size and severity of the 2020 fires in the west-
ern Cascades are consistent with the historic fire 
regimes in the region (Reilly et al. 2022). However, 
climate change could increase the frequency of the 
historically infrequent conditions that are conducive 
to burning in climate-limited systems in the west-
ern US, including the Pacific Northwest (Higuera 
and Abatzoglou 2020; Higuera et al. 2021). Increas-
ing aridity has an exponential effect on area burned 
because aridity enables larger fires and larger 
fires have greater potential for growth (Juang 
et  al. 2022), and the additional fuel drying due to 
increased atmospheric water demand can increase 
the amount of energy available for release during 
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combustion (Goodwin et  al. 2021). In the absence 
of changes in the frequency of extreme strong wind 
events, increasing aridity driven by climate change 
would increase the likelihood of extreme combina-
tions of strong winds and fuel aridity, such as those 
that occurred during the 2020 fire year. The high-
severity fire proportions in the fires that occurred 
in the western Cascades in 2020 during the period 
of high aridity but normal wind speeds were within 
the range of high-severity fire proportion in Pacific 
Northwest fires between 1984 and 2010, suggest-
ing that wind speed was an important driver of the 
area burned at high-severity (Reilly et  al. 2017; 
Evers et al. 2022). However, an increase in the fre-
quency of periods with high fuel aridity could also 
allow for an increase in fire frequency, and if indi-
vidual fires burned with the same proportion high-
severity as fires that occurred from 1984 to 2010, an 
increase in the frequency of those fires would result 
in an increase in the frequency of high-severity fire.

Recent modeling studies evaluating the vulner-
ability of forest carbon to wildfire across the west-
ern US have classified forests in the Pacific North-
west as low risk relative to other regions, possibly 
because these models combine fuel conditions and 
climate in the calculation of risk (Buotte et  al. 
2018), and other regions of the western US are pro-
jected to be exposed to climate conditions condu-
cive to fire with greater frequency. The results we 
present here including the 2020 fires across the 
western US suggest that mesic forests of the Pacific 
Northwest and other climate-limited systems are at 
greater risk of large high-severity burn areas when 
fuel and weather conditions allow. If the extreme 
climatic conditions observed in 2020 conducive 
to burning occur more frequently, as expected 
(Higuera and Abatzoglou 2020; Coop et  al. 2022) 
watersheds in climate-limited regions could be 
exposed to the potential for large proportions of 
their forested area to burn at high-severity with 
increasing frequency. In a background of ongoing 
aridification, in comparison with fuel-limited sys-
tems in the western US, the high fuel availability of 
usually climate-limited forests could partially offset 
the reduction in potential high-severity burn area 
that results from their relatively lower frequency of 
exposure to climate conditions that are conducive to 
fire.

Conclusions

Here, we show that coniferous forested watersheds 
in the western US with higher connectivity in forest 
cover, lower forest cover heterogeneity, and higher 
fuel availability have larger high-severity burn areas 
during recent wildfires. Prior to 2020, watersheds 
with the highest fuel availability, located in mesic 
forests in the Pacific Northwest, had small to inter-
mediate high-severity burn areas, but had multiple 
very large high-severity burn areas during 2020. Our 
results identify forested watersheds where fuel condi-
tions contribute to a high risk of large high-severity 
forest wildfires, and suggest that in forests with fuel-
limited fire regimes, fuel management could mitigate 
the risk of large high-severity burns by reducing fuel 
accumulation and forest connectivity, and increasing 
forest cover heterogeneity (North et  al. 2021). The 
change in the relationships between fuel and high-
severity burn area from including 2020 fires suggests 
that the exceptionally high fuel availability in for-
ests with usually climate-limited fire regimes in the 
Pacific Northwest corresponds to a uniquely high sen-
sitivity to climate conditions that are an inadequate 
barrier to wildfire.
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