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H I G H L I G H T S  

• Network of the low-cost sensors used to monitor air quality in 7 locations. 
• PM reduction up to 70% was observed from the residence with air purifiers. 
• Low-cost sensors showed a good agreement with regional monitors. 
• Personal PM2.5 exposure to wildfire smoke was mapped with a wearable monitor. 
• Personal exposure was attributed to the microenvironments based on the GPS data. 

A B S T R A C T   

The increased frequency of wildfires in the Western United States has raised public awareness of the impact of wildfire smoke on air quality and human health. 
Exposure to wildfire smoke has been linked to an increased risk of cancer and cardiorespiratory morbidity. Evidence-driven interventions can alleviate the adverse 
health impact of wildfire smoke. During wildfires, public health guidance is based on regional air quality data with limited spatiotemporal resolution. Recently, low- 
cost air quality sensors have been used in air quality studies, given their ability to capture high-resolution spatiotemporal data. We demonstrate the use of a network 
of low-cost particulate matter (PM) sensors to gather indoor and outdoor PM2.5 data from seven locations in the urban Seattle area, along with a personal exposure 
monitor worn by a resident living in one of these locations during the 2020 Washington wildfire event. The data were used to determine PM concentration indoor/ 
outdoor (I/O) ratios, PM reduction, and personal exposure levels. The result shows that locations equipped with high-efficiency particulate air (HEPA) filters and 
HVAC filtration systems had significantly lower I/O ratios (median I/O = 0.43) than those without air filtration (median I/O = 0.82). The median PM2.5 reduction for 
the locations with HEPA is 58% compared to 20% for the locations without HEPA. The outdoor PM sensor showed a high correlation to the nearby regional air quality 
monitoring stations (pre-calibration R2 

= 0.92). The personal monitor showed higher variance in PM measurements as the user moved through different micro
environments and could not be fully characterized by the network of indoor or outdoor monitors. The findings imply that evidence-based interventions can be 
developed to reduce pollution exposure when combining data from indoor and outdoor sensors. Personal exposure monitoring captured temporal spikes in PM 
exposure.   

1. Introduction 

Climate-change-related wildfires have become more frequent and 
intense in the Western United States. Summer wildfire seasons are 40–80 
days longer than they were 30 years ago (Jolly et al., 2015). Evidence 
suggests that California and other Western states will likely see 
ever-worsening fires due to climate change and land management 
practices (Kennedy et al., 2021; Barbero et al., 2015; Spracklen et al., 
2009; Burke et al., 2021a). The intensified wildfires will release more 
smoke into the atmosphere (Yue et al., 2013), traveling significant 

distances (Tiwari et al., 2017). Fine particulate matter (PM2.5), a major 
pollutant in smoke from wildfires, can travel deep into the respiratory 
tract (Burke et al., 2021b). The combustion-generated aerosols consist of 
elemental carbon and organic carbon fraction, which may be more toxic 
than other PM2.5 sources and may have long-lasting impacts on health 
(Samburova et al., 2017; Aguilera et al., 2021; Magzamen et al., 2021; 
Landguth et al., 2020). Complex flow structures associated with 
large-scale flames and low flame temperature in biomass burning lead to 
low carbonization of organic carbon, thus – high levels of potentially 
carcinogenic polycyclic aromatic compounds (West et al., 2020; 
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Mahamuni et al., 2020; Davis et al., 2019, 2020). Exposure to PM2.5, 
particularly combustion-generated aerosols, has been linked to adverse 
respiratory and cardiovascular health effects, including ischemic heart 
disease, stroke, cardiovascular mortality, and exacerbations of asthma 
and chronic obstructive pulmonary disease (Deflorio-Barker et al., 2019; 
Liu et al., 2021; Dennekamp and Abramson, 2011; Reid et al., 2016; 
Matz et al., 2020). More recently the wildfire PM exposures have been 
linked to higher severity and mortality of SARS-CoV-2 (Meo et al., 2021; 
Cortes-Ramirez et al., 2021; Kiser et al., 2021; Navarro et al., 2021). 

A series of large wildfires impacted air quality in western regions of 
the United States in 2020. The episode measured in this study (2020 
Washington Labor Day fires) began on September 7, 2020, and were 
90% contained by September 22. The fires burned over 41,000 acres of 
the forest (Center, 2020). Due to the SARS-CoV-2 pandemic 
shelter-in-place order by Washington state in early 2020, people spent a 
significant amount of time indoors during the 2020 wildfire season. The 
public health advice for protection from wildfire smoke exposure is to 
stay indoors, preferably in a “clean room” with filtered air, closed 
windows and doors, and minimize physical exertion. However, studies 
have shown that PM2.5 could penetrate indoors even with all the win
dows and doors closed (Xu et al., 2017; Park et al., 2021). With limited 
access to portable air cleaners during wildfires and increasing awareness 
of the health impact of wildfire smoke exposure, monitoring indoor 
PM2.5 is critical to estimate household members’ wildfire smoke expo
sure. Failure to assess the exposure to wildfire smoke could lead to 
misclassification of exposure in future epidemiology studies and have 
important public health implications for targeting smoke reduction in
terventions. The opportunity exists to improve personal exposure 
assessment and design individualized intervention strategies that would 
significantly reduce the adverse impact of PM pollution on human 
health, including the severity and mortality of Covid-19 cases (Laum
bach and Cromar, 2021; Rappold et al., 2014). 

Recent advancements in low-cost particulate matter (PM) sensors led 
to their extensive use in various applications, such as air quality (AQ) 
monitoring in indoor (Makhsous et al., 2021; Hegde et al., 2020; Li et al., 
2018; Kumar et al., 2016) and outdoor (Seto et al., 2014; Liu et al., 2020; 
Kuhn et al., 2021; Jiao et al., 2016; Gao et al., 2015) environments, 
including large-scale deployments (Kumar et al., 2015; Li et al., 2020a; 
Chao et al., 2021; Qiao et al., 2021). Optical PM sensors rely on elastic 
light scattering providing size-resolved PM concentrations in the 
0.3–10.0 μm range. The low-cost sensor measurements may suffer from 
sensor-to-sensor variability due to a lack of quality control and differ
ences between individual components (Austin et al., 2015; Sousan et al., 
2016). The scattering light intensity depends on particle size, 
morphology, complex index of refraction (CRI), and sensor geometry 
(Njalsson and Novosselov, 2018). CRI sensitivity can be addressed by 
optimizing the design to measure scattered light at multiple angles 
simultaneously or by employing dual-wavelength techniques (Renard 
et al., 2016; Nagy et al., 2007). However, these solutions are complex 
and involve expensive components that are not suitable for compact, 
low-cost devices (Makhsous et al., 2021). 

Environmental conditions were reported to affect sensor output, e.g., 
a non-linear response has been reported with increasing RH (Liu et al., 
2019; Jayaratne et al., 2018; Chakrabarti et al., 2004; Sioutas et al., 
2000; Malm et al., 2000). High humidity (RH > 75%) creates challenges 
for particle instruments; e.g., significant variations were observed be
tween different commercially available devices, such as Nova PM sensor 
(Liu et al., 2019) and personal DataRAM (Chakrabarti et al., 2004). In 
addition, the RH measurement approach could also affect the sensor 
output (Liu et al., 2019; Jayaratne et al., 2018), e.g., the RH measure
ment based on a reference monitoring site rather than inside the sensor 
enclosure may be different due to the microenvironment and transient 
effects. The selection of reference instruments with different measuring 
principles may also influence the calibration of low-cost sensors. For 
example, the calibration of the Plantower PM sensor in Jayaratne et al., 
2018) was based on the tapered element oscillating microbalance 

(TEOM), while Zusman et al., 2020 calibrated the same sensor against 
the beta attenuation monitor (BAM) and federal reference method 
(FRM) measurements (Jayaratne et al., 2018; Zusman et al., 2020). The 
integrated mass measurements cannot resolve temporal changes in 
particle size and concentration during the calibration experiment. The 
instruments that directly measure aerosol size and concentration, such 
as aerodynamic particle sizer (APS), can be a better fit for sensor cali
bration (Austin et al., 2015; Manikonda et al., 2016). 

As low-cost sensors find applications in pollution monitoring, 
various studies have evaluated the performance of low-cost PM sensors 
in laboratory and field settings (Austin et al., 2015; Zusman et al., 2020; 
Cordero et al., 2018; Feenstra et al., 2019; Kelly et al., 2017; Sayahi 
et al., 2019; Tryner et al., 2020; Wang et al., 2020). These reports show 
that low-cost sensors yield useable data when calibrated against 
research-grade reference instruments (Chao et al., 2021; Huang et al., 
2021a; Li et al., 2020b). The low-cost sensor networks have the potential 
to provide high spatial and temporal resolution, identifying pollution 
sources and hotspots, which in turn can lead to the development of 
intervention strategies for exposure assessment and intervention stra
tegies for susceptible individuals. Time-resolved exposure data from 
wearable monitors can be used to assess individual exposure in near 
real-time (Duncan et al., 2018). 

This study utilized a network of indoor, outdoor, and wearable low- 
cost air quality sensors to evaluate 1) the effectiveness of intervention 
strategies used in different households in terms of PM2.5 I/O ratios and 
PM2.5 reduction during the 2020 Washington wildfire in seven locations, 
including residential and office buildings; 2) estimation of personal 
exposure by (i) wearable sensor and (ii) a combination of indoor and 
outdoor monitors, where the fraction of personal exposure from 
different microenvironments is determined based on the Global Posi
tioning System (GPS) and time-resolved PM sensor data. 

2. Methods 

2.1. PM monitor 

The monitor used in this study consists of a PM sensor, a tempera
ture/humidity/pressure sensor, a GPS module (ublox SAM-M8Q), and a 
display (see Fig. 1a). The PM sensor (Plantower PMS A003, Beijing 
Plantower Co., Ltd, China; referred to as PMS hereafter) is an optical 
scattering-based sensor with a photodiode positioned normal to the 
excitation beam. The scattering light intensity is converted to a voltage 
signal to estimate PM number concentration and mass concentration 
using a proprietary calibration algorithm. The PMS provides estimated 
particle counts in six size bins with the optical diameter in the 0.3–10 μm 
(#/0.1L) range and mass concentration (μg/m3) for PM1, PM2.5, and 
PM10. The mass concentrations can be set to “standard” and “atmo
spheric”, altering the assumed particle density. The “standard” condi
tion is designed to be used in industrial settings, whereas the 
“atmospheric” condition best measures particles in the ambient envi
ronment. The “ATM” setting for PM2.5 concentration was used in this 
study; the sampling interval was set to 10 s. The same device was also 
used as the wearable persona monitor. GPS data were used to coordinate 
the personal data to a specific location and attribute the PM exposures to 
the user’s microenvironment. 

2.2. Sampling sites 

The monitors were deployed in seven urban Seattle locations (see 
Figure A1). Each site had one outdoor sensor and at least one indoor 
sensor. The L2 location had two indoor sensors positioned in different 
rooms within the residence. One user from the sampling site L2 wore an 
additional personal monitor for the duration of the study. The study 
covered the wildfire episode between September 10 and September 21, 
2020. The sampling sites included two University of Washington (UW) 
buildings and five residences in Seattle. Data from the nearby Puget 
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Sound Clean Air Agency (PSCAA) regional stations were used for the 
data quality control. Before the study, information about the sites, such 
as housing type, size, HVAC, primary indoor PM sources, and possible 
sensor locations, was collected (see Table 1). Three sites (L1-L3) had 
portable air purifiers or built-in high-efficiency air filtration in HVAC 
systems. Both UW buildings (L6 and L7) were largely unoccupied due to 
the shelter-in-place order and were not equipped with HEPA filtration 
units. The residents at the sampling sites were not given specific in
structions on whether to keep the windows and doors open or closed but 
were asked about this after the sampling was completed. The research 
staff performed the sampling at the UW buildings, and the windows 
were kept closed during sampling. 

2.3. Data analysis 

The low-cost sensor data were corrected against the average of PM2.5 
from the two nearby PSCAA regional monitors (Lake Forest Park and 
Seattle 10th & Weller). The correction model was generated using a data 
subset from the outdoor sensor outside a UW building (L6) during the 
wildfire event. The L6 building was largely unoccupied during the 
wildfire and had minimum local activities that would influence PM2.5 
measurement compared to the other sampling sites. The L6 is located at 
least 200 m from any major traffic arterials. Before the deployment, PMS 
sensors were accessed for their data accuracy. Sensor to sensor 

difference was within 10%, as shown in our previous aerosol chamber 
experiments (Huang et al., 2021a). Informed by our previous PMS sensor 
calibration study, a linear model and a quadratic were tested to fit using 
the outdoor sensor data from L6: 

Ref = β0 + β1 ⋅ PMS (1)  

Ref = β0 + β1 ⋅ PMS + β2 ⋅ PMS2 (2)  

where β0, β1, and β2 are the regression coefficients, Ref is the hourly 
reference PM2.5 concentrations from the nearby PSCAA monitoring 
stations, and PMS and PMS2 are the linear and quadratic coefficients of 
the raw PM2.5 data from the sensor, respectively. The fits with zero 
intercept (β0 = 0) and non-zero intercept (β0 ∕= 0) were tested. The 
Bayesian Information Criterion (BIC) informed the optimal calibration 
model. 

The time-resolved PM concentration I/O ratio was calculated to 
assess the smoke infiltration. We conducted the Wilcoxon signed-rank 
tests (for paired comparison) to compare the I/O ratio during the 
wildfire to the I/O ratio post the wildfire. To assess the reduction in PM 
levels, we compared indoor and outdoor time-resolved PM concentra
tions. We calculated PM2.5 reduction for each site and the personal 
exposure as: 

PM2.5Reduction=
O − I

O
% (3)  

where O is the average outdoor PM2.5 concentration (μg/m3) during the 
wildfire and I is the average indoor or personal PM2.5 concentration (μg/ 
m3). 

To understand the contribution of each microenvironment to per
sonal exposure, we attributed the user’s daily PM2.5 exposures in each 
location using GPS data with a 2.5m horizontal accuracy from the 
wearable monitor. The personal exposure attribution was done using 
Python 3.7.1. The raw PM2.5 data were first aggregated into 10-min 
averages to reduce the data size without losing significant spatial reso
lution. The geocoordinates, recorded in conjunction with the PM2.5 
concentration, were grouped into three categories where the user spent 
most of the time: home, office, and other. We defined the buffer zones 
encircling the residence and the office locations with a 10-m clearance to 
minimize misclassification caused by the GPS drift. The home and office 
geolocation data were visually confirmed on a map for each occurrence 
when the user with the wearable monitor was at the location. Records 
collected outside these two buffer zones were classified as “other loca
tions”. Then the PM2.5 exposures attributed to each microenvironment 
for each day were calculated as: 

Fig. 1. a) Exploded view of the monitor; b) The wearable monitor.  

Table 1 
General characteristics of the sampling sites.  

Location 
ID 

Building 
Type 

Size 
(sq. 
ft) 

HVAC HEPA Window 
Openinga 

Indoor PM 
Sourcesa 

L1 1-story 
SFH 

1600 N Y Sometimes Occasional 
cooking 

L2-a 1-story 
SFH 

1500 N Y No Occasional 
cooking L2-b 

L3 2-story 
SFH 

3500 Yb N No Occasional 
cooking 

L4 2-story 
SFH 

3000 N N Always Frequent 
cooking 

L5 Apartment 800 N N Sometimes Occasional 
cooking 

L6 Office 135 Y N No N/A 
L7 Office 144 Y N No N/A 

Definition of abbreviation: SFH = single-family home; Y = Yes; N= No; sq.ft =
square feet. 

a Self-reported information. 
b Electrostatic precipitator built in the HVAC. 
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ACkj =
Ckj × Fkj∑n

k=1Fkj

(4)  

where ACkj represents the attributable exposures of microenvironment k 
to the total personal exposure on day j; Ckj is the hourly average PM2.5 

concentrations (μg/m3) of microenvironment k on day j ; and Fkj is the 
fraction of time spent in microenvironment k on day j. 

3. Results and discussion 

3.1. PMS sensor correction 

The data from the L6 outdoor sensor shows a good agreement with 
the regional monitors with the pre-calibration R2 = 0.92. The linear 
model shows the lower root-mean-square-error (RMSE) and BIC, with 
the overall RMSE improved from 18.47 μg/m3 to 14.35 μg/m3 against 
the regional monitors with the post-calibration R2 = 0.94 (see 
Figure A2). The quadratic model was also tested and did not result in a 
significant improvement; thus, the data from all the other sensors were 
corrected with the linear model. After the correction, the correlation 
between the average outdoor PM concentration from the sensor network 
and the average of the reference monitors is 0.97. The high correlation 
suggests that a wildfire is a regional event with low spatial variance. 
Both OEM and the custom calibrations for the wildfire smoke performed 
well in the high PM level study. The correlation is higher than the R2 

value from California’s low-cost sensor calibration study in 2020 (Bi 
et al., 2020). Other researchers reported similar values for the PM2.5 
index in their field calibrations of PMS sensors (Kelly et al., 2017; Levy 
Zamora et al., 2018; Zamora et al., 2019). In the Siberian wildfire 
monitoring study, Lin et al. reported agreement with the BAM reference 
instruments of R2 = 0.94 (Lin et al., 2020), similar to our results. Liang 
et al. analyzed the data from the PurpleAir sensors during the California 
wildfire season and reported good agreement with the EPA measure
ments (R2 = 0.87) (Liang et al., 2021). The recent EPA challenge has also 
demonstrated that PM type-specific calibrations improved the PM sensor 
accuracies to ~75–83% for conditions typical to wildfire events (Landis 
et al., 2021). These studies and our results suggest that a high correlation 
of PMS to reference instrument for PM2.5 index can be attributed to 
specific correction for wildfire smoke and the dominance of these PM in 
the airshed during the wildfire. Note that PMS A003 performed well 
when tested against several different aerosols if the mass index for PM2.5 
was used. Our earlier study showed that the addition of PM-specific 
terms (such as complex index of refraction and density) improves the 
accuracy of the PMS sensor for both number density and mass concen
tration. However, the RH term did not improve calibration in the RH =
17–80% range (Huang et al., 2021a). During this study, the RH was 
lower than 80%. Thus, the RH term was not included in the correction 
model used in this analysis. 

There are some additional considerations for stationary and wear
able sensor selection specific to wildfire smoke monitoring. Kelleher 
et al. reported that the Sharp GP2Y1023AU0F sensor suffered from 

temperature dependence, drift, and imprecision during the wildfire 
smoke tests (Kelleher et al., 2018). The same sensor had difficulty 
tracking high PM concentrations in monitoring high woodsmoke con
centrations from residential combustion sources (Bjornsson, 2014). 
Thus, the saturation limit of the sensor must be considered in the plume 
tracking and wildfire studies. In this study, the stationary and wearable 
PMS sensors did not exhibit significant drift over one-week deployment, 
and the correlation to PSCAA reference stations was consistent 
throughout the study for outdoor network sensors (see Fig. 2). 

3.2. Time-resolved PM concentrations 

Fig. 2 shows 1-h averages of PM2.5 concentrations measured by the 
sensor network and the regional monitors during the wildfire. The data 
are divided into indoor and outdoor categories. The indoor data are 
further divided into HEPA (L1-L3) and Non-HEPA (L4-L7) subsets. The 
shaded areas represent one standard deviation (1σ) of the measure
ments. The data from the outdoor monitors closely match the reference 
monitors. The locations with active air filtration had a significantly 
lower PM concentration, while locations without HEPA filters had only 
slightly lower PM levels. Occasional spikes in PM concentration, above 
the already high baseline, were observed due to cooking activities. Note 
that even with the active PM control strategies implemented in several 
households, the average indoor PM2.5 is still much higher than the 
typical (non-wildfire season) outdoor PM2.5 levels (<10 μg/m3) in this 
region (Xiang et al., 2020; Huang et al., 2021b). 

3.3. Detailed PM concentrations and analysis 

We present a case-by-case analysis to provide insight into the effec
tiveness of aerosol mitigation strategies and the significance of the 

Table 2 
Summary of the indoor and outdoor PM2.5 levels (μg/m3) and I/O ratios for each sampling site.  

Location ID Indoor Outdoor I/O ratios PM2.5 Reduction (%)a 

Mean Max Mean Max Min Median Mean Max 

L1 20.9 42.2 102.0 174.2 0.1 0.21 0.23 0.74 79.6% 
L2-a 58.7 147.4 114.5 206.3 0.18 0.52 0.54 1.41 48.7% 
L2-b 42.4 100.1 114.5 206.3 0.04 0.40 0.41 1.09 63.0% 
L3 48.9 124.7 104.5 185.3 0.10 0.46 0.54 5.23 53.2% 
L4 104.3 396.2 123.8 215.7 0.73 0.86 0.88 1.44 15.7% 
L5 79.7 154.9 112.2 205.5 0.51 0.69 0.73 1.93 29.0% 
L6 90.9 150.9 110.1 208.6 0.57 0.84 0.86 3.62 17.5% 
L7 82.5 170.7 105.5 196.7 0.44 0.80 0.80 1.71 21.8%  

a Comparison between indoor and outdoor PM2.5 levels during the wildfire as calculated using equation (3). 

Fig. 2. Corrected average indoor and outdoor PM2.5 concentrations across the 
seven sampling sites compared to the reference monitors during the wildfire. 
The purple and orange lines illustrate the average indoor PM2.5 concentrations 
at the sampling sites with and without HEPA filtration, respectively. The 
shading around each line shows the one standard deviation (1σ) of the mea
surement. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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quantity and placement of sensors within the residences. Fig. 3 shows 
the 1-h average indoor and outdoor data for all sites with the averaged 
PM2.5 from the two reference monitors in green color for comparison. 

Overall, the outdoor sensors are in close agreement with PSCAA data. 
In some cases, the outdoor sensors reported spikes in PM concentration 
likely due to the local activities near monitoring sites, which the PSCAA 
monitors could not detect (see Fig. 3). Similar spikes were reported in 
several previous studies using low-cost sensors for local AQ monitoring 
(Hegde et al., 2020; Mousavi and Wu, 2021; Gupta et al., 2018). These 
differences can be explained by (i) spikes in the local PM concentration 
or (ii) mismatch in sensor sampling rate as the network sensors sampling 
interval was set to ~ 10 s, while the reference monitors’ reporting in
terval was 1 h. Though both scenarios are possible, the PM levels dif
ference between the locations suggests that some differences in outdoor 
PM2.5 concentration were driven by local events that the regional 
monitors could not capture. 

HEPA filters and electrostatic air purifiers reduced indoor PM2.5 
concentration by 48–80% at L1-3. A similar PM2.5 reduction level was 
also observed in other studies summarized in Kelly and Fussell’s review 
of air purification technologies in pollution reduction in indoor envi
ronments (Kelly and Fussell, 2019). Only a moderate PM reduction 
(16–29%) was observed when no PM filers were used at L4 - L7. Xiang 
et al. reported that portable HEPA filter units led to a 48%–78% decrease 
in indoor PM2.5 during the same wildfire episode (Xiang et al., 2021a). 
Stauffer et al. compared the PM2.5 concentrations in the office to those 
recorded at the nearest Air Quality monitoring station during the 
wildfire episode. The portable air cleaner reduced PM in the office by 
73%–92% (Stauffer et al., 2020), similar to the smaller home office 
setting (L1) in our study. Table 2 lists the mean and maximum of PM2.5 
and hourly PM2.5 indoor/outdoor (I/O) ratio for each sampling site. 
PM2.5 reduction levels were calculated for each sampling location to 
indicate the effectiveness of mitigation strategies for households. 

Location L1 had the indoor monitor placed in a relatively small room 
(home-office ~ 150 ft2) with a high-volume HEPA filter for the entire 
wildfire episode. This relatively small “clean room” environment strat
egy resulted in the study’s lowest median I/O ~0.2 (see Table A1). 
However, data for other locations (e.g., bedrooms, living room) within 

the residence are not available, which is problematic for assessing per
sonal exposure. 

The residents of the L2 residence had the two monitors in separate 
rooms: L2a was placed in a larger living room (~350 ft2) and L2b - in the 
adjacent home office (120 ft2). Two portable HEPA filtration units were 
used: one in the living room, and the other was moved from the office to 
the bedroom at nighttime. The data from the living room has relatively 
low variance; however, the larger room was not cleaned as effectively as 
the smaller home office or bedroom, I/O ratio stayed relatively constant 
at ~0.5. When the filtration unit was positioned in the office, the I/O 
ratios dropped to ~0.4. When the filter was moved from the home office 
to the bedroom, the PM level in the office increased to the level of the 
adjacent living room. The bedroom was not monitored by a fixed sensor; 
however, the resident’s wearable sensor recorded a significant PM 
reduction in the bedroom during the night, with the I/O ratio close to 0.1 
(see Fig. 4). 

The L3 site had an electrostatic precipitator installed in the HVAC 
system. The HVAC system was controlled by a thermostat, which 

Fig. 3. Time-series plots of indoor and outdoor PM2.5 concentrations are compared to the reference monitors for each sampling site during the wildfire. The blue and 
red lines represent the indoor and outdoor PM2.5 measured by the sensors, and the green line represents the averaged PM2.5 concentrations from the two nearby 
regional monitoring sites. Note that L4 has the Y-axis range of 0–400 μg/m3 to show the spikes of the indoor PM2.5. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Profile of 10-min averaged PM2.5 concentrations by the personal 
monitor (green line) and the bedroom monitors (the blue and purple line) 
during the wildfire. The shaded areas mark the nighttime (10:00 p.m. - 6:00 a. 
m.). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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explains the periodic pattern of the PM concentration. The PM concen
tration (measured in the bedroom) dipped during the daytime when the 
forced air HVAC system was ON and went up during the nighttime when 
the HVAC was OFF. 

L4 indoor monitor was placed in the kitchen, where it detected the 
spikes from cooking activities in addition to the high background level 
from wildfire smoke intrusion. L4 residents kept their kitchen windows 
open during the wildfires, which explains the highest background indoor 
PM level among all the sampling sites. L4 outdoor sensor stopped 
working three days after the deployment because it was accidently un
plugged from the AC outlet. I/O ratio for L4 was calculated using the 
data collected before September 13. The sampling site L4 without air 
filtration and closed windows had only a 13% indoor-outdoor 
difference. 

The L5 residence did not have a central HVAC system. A portable AC 
unit (AeonAir Model #RPAC08EE) with a low-grade PM filter was used 
by the residents during the wildfire. The window in the residence was 
closed for the entire duration of sampling (self-reported). L5 monitor 
was placed in the apartment’s kitchen/living room area (200 ft2). PM 
concentration was lower than the outdoor level during the wildfire but 
higher than in other residences with air filtration units. L6 and L7 are 
two UW buildings with HVAC systems but low-grade filtration units. The 
data is similar to the L5 residential site. The buildings were largely 
unoccupied during the wildfire due to COVID lockdown, and the win
dows were closed. The indoor PM2.5 at L6 and L7 are lower than out
door. The I/O ratios were similar to L5 (~0.7–0.8). 

Interestingly, sites L3 and L7 with central filtration units show 
similar trends. PM concentration dipped rapidly when the HVAC was 
turned ON (controlled by a thermostat). As the central HVAC unit was 
OFF, the PM concentration climbed up due to the infiltration of smoke. 
Though the analysis of HVAC performance is beyond the scope of this 
manuscript, these data can be used to design and optimize HVAC per
formance, such as the use of economizers, sensor-based controls, filter 
upgrades, etc. 

The average I/O ratio across all seven sites was 0.62. The sites with 
HEPA filters (L1, L2-a, L2-b, and L3) and the sites without HEPA filters 
(L4- L7) had an average I/O ratio of 0.43 and 0.82, respectively. Lower 
I/O ratios were found in the study conducted in the same region during 
the same wildfire episode (I/O = 0.19 for the households with air 
cleaners; I/O = 0.56 for the households without air cleaners) (Xiang 
et al., 2021b). May et al. evaluated PM2.5 infiltration in the western US 
during the 2020 wildfire and found I/O ratios for the school (0.7) and 
residential (0.4) buildings (Mae et al., 2021). Similar to our results, the 
authors noted that using multiple filter units in residences was associ
ated with substantially lower I/O values. 

3.4. Personal exposure measurement - A case study 

To assess personal exposure as a function of the microenvironment, 
we compared the personal data measured by the wearable monitor with 

the wearer’s home-based monitor data. Fig. 4 shows the 10-min average 
of PM2.5 concentration measured by the user’s personal and home-based 
monitors for reference. The wearable sensor PM2.5 data showed a 68% 
PM2.5 reduction, which is lower than the PM2.5 reduction estimated 
using the wearer’s indoor monitors. The shaded areas mark the night
time (10:00 p.m. - 6:00 a.m.). The personal monitor recorded signifi
cantly lower PM2.5 concentration at night compared to the other two 
home-based monitors located in the living room and the home office, 
which can be explained by the colocation of the HEPA air cleaner and 
wearable monitor. The user is an aerosol researcher who monitored his 
exposure during the wildfire. The difference in the personal exposures, 
measured by the wearable and the home-based monitor, indicates that 
access to special hyperlocal resolution (Indoor - room level, Outdoor – 
2.5 m, Wearable sensor level – 2.5m with 10 m buffer) for PM data can 
enhance the efficacy of PM exposure interventions. 

We also apportioned the user’s exposure based on the GPS data. 
Fig. 5a shows the 10-min average of PM2.5 concentration measured by 
the personal sensor color-coded based on the microenvironment. The 
user spent the most time at home, 15% of the time in the office, and 9% 
in other locations. Exposure outside the home and the office was cate
gorized into other locations. The wearable monitor recorded higher 
PM2.5 levels in the user’s workplace and other locations than at the 
residence. Fig. 5b shows the weighted daily average personal exposure 
in different microenvironments. The personal exposure contribution 
from the office and other locations was 36% of the total smoke exposure 
during the wildfire, while the time spent in these environments was 24% 
(see Figure A3). Attributing personal exposure to specific microenvi
ronments can help plan personal activities during wildfire events. 

Personal exposure assessment studies used stationary monitoring of 
microenvironments (Gulliver and Briggs, 2004; Steinle et al., 2015) and 
wearable monitors. Utilizing the former, Steinle et al. reported sub
stantial variability across microenvironments and noted that it is 
essential to measure near-complete exposure pathways. (Steinle et al., 
2015). Morawska et al., in their review, pointed out a strong dependence 
on resident activities, source events, and site-specificity on personal 
exposure. The authors assessed that 10–30% of the total PM exposure 
was from indoor-generated particles (Morawska et al., 2013). In our 
work, elevated PM levels due to cooking activities were observed (L4, 
L5); however, using a portable HEPA filter significantly reduced the 
exposure during the wildfire if the windows were closed (L1-L3). Han 
et al. reported that the average daily personal exposure to PM2.5 in 
Beijing was consistently lower than using corresponding ambient con
centrations (Han et al., 2021). 

4. Conclusions 

This study demonstrates the application of a low-cost sensor network 
for air quality monitoring during the 2020 Washington wildfire event. 
The outdoor PM2.5 data from the sensor network had an excellent 
agreement with the nearby PSCAA regional monitors. The spatial 

Fig. 5. a) Time series plots of the personal PM2.5 exposure color-coded based on the microenvironment the user was in; b) Weighted daily average personal exposure 
in different microenvironments. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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variance for PM2.5 in the urban area was low during the wildfire event. 
Our results showed that during the 2020 Washington wildfire, the out
door PM2.5 level was as high as > 200 μg/m3 in the Seattle area. Using a 
portable HEPA air cleaner was associated with lower indoor PM2.5 levels 
during the wildfire episode, with a PM2.5 reduction of 50–77% among 
the sampling sites. However, the observed levels were still higher than 
the typical Seattle outdoor PM levels (<10 μg/m3). The I/O ratio was 
driven by the smoke infiltration and the quality of air filtration. The 
personal monitoring results highlighted the influence of microenviron
ments on an individual’s exposure to PM2.5. Although this study had a 
relatively small sample size, it demonstrated that personal action, such 
as staying indoors and using HEPA air cleaner, can reduce personal 
exposure to wildfire smoke. The personal exposure analysis suggests that 
knowledge about personal PM levels can lead to a reduction in exposure. 
More extensive studies and a collection of time-activity information are 
warranted to investigate the source of PM2.5 exposure and the health 
impact of PM exposure. 
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